Skip to main content

LINKS: Learning-Based Multi-source IntegratioN FrameworK for Segmentation of Infant Brain Images

  • Conference paper
  • First Online:
Medical Computer Vision: Algorithms for Big Data (MCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8848))

Included in the following conference series:

Abstract

Segmentation of infant brain MR images is challenging due to insufficient image quality, severe partial volume effect, and the ongoing maturation and myelination processes. In particular, the image contrast inverts around 6–8 months of age, and the white and gray matter tissues are isointense in both T1- and T2-weighted MR images and thus exhibit the extremely low tissue contrast, which poses the significant challenges for automated segmentation. Most previous studies used multi-atlas label fusion strategy, which has the limitation of equally treating the available multi-modality images and is often computationally expensive. In this paper, we propose a novel learning-based multi-source integration framework for infant brain image segmentation. Specifically, we employ the random forest technique to effectively integrate features from multi-source images together for tissue segmentation. The multi-source images include initially only the multi-modality (T1, T2 and FA) images and later also the iteratively estimated and refined tissue probability maps of gray matter, white matter, and cerebrospinal fluid. Experimental results on 119 infant subjects and MICCAI challenges show that the proposed method achieves better performance than other state-of-the-art automated segmentation methods, with significantly reduction of running time from hours to 5 minutes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.nitrc.org/projects/ibeat.

  2. 2.

    http://www.itksnap.org/.

  3. 3.

    http://neobrains12.isi.uu.nl.

  4. 4.

    http://neobrains12.isi.uu.nl/mainResults_Set1.php.

  5. 5.

    https://masi.vuse.vanderbilt.edu/workshop2013.

  6. 6.

    http://www.unc.edu/~liwa.

References

  1. Nie, J., Li, G., Wang, L., Gilmore, J.H., Lin, W., Shen, D.: A computational growth model for measuring dynamic cortical development in the first year of life. Cereb. Cortex 22, 2272–2284 (2012)

    Article  Google Scholar 

  2. Li, G., Nie, J., Wang, L., Shi, F., Lyall, A.E., Lin, W., Gilmore, J.H., Shen, D.: Mapping longitudinal hemispheric structural asymmetries of the human cerebral cortex from birth to 2 years of age. Cereb. Cortex 24, 1289–1300 (2013)

    Article  Google Scholar 

  3. Weisenfeld, N.I., Warfield, S.K.: Automatic segmentation of newborn brain MRI. NeuroImage 47, 564–572 (2009)

    Article  Google Scholar 

  4. Xue, H., Srinivasan, L., Jiang, S., Rutherford, M., Edwards, A.D., Rueckert, D., Hajnal, J.V.: Automatic segmentation and reconstruction of the cortex from neonatal MRI. NeuroImage 38, 461–477 (2007)

    Article  Google Scholar 

  5. Gui, L., Lisowski, R., Faundez, T., Hüppi, P.S., Lazeyras, F., Kocher, M.: Morphology-driven automatic segmentation of MR images of the neonatal brain. Med. Image Anal. 16, 1565–1579 (2012)

    Article  Google Scholar 

  6. Wang, L., Shi, F., Yap, P.-T., Gilmore, J.H., Lin, W., Shen, D.: 4D multi-modality tissue segmentation of serial infant images. PLoS ONE 7, e44596 (2012)

    Article  Google Scholar 

  7. Wang, L., Shi, F., Yap, P., Lin, W., Gilmore, J.H., Shen, D.: Longitudinally guided level sets for consistent tissue segmentation of neonates. Hum. Brain Mapp. 34, 956–972 (2013)

    Article  Google Scholar 

  8. Wang, L., Shi, F., Lin, W., Gilmore, J.H., Shen, D.: Automatic segmentation of neonatal images using convex optimization and coupled level sets. NeuroImage 58, 805–817 (2011)

    Article  Google Scholar 

  9. Wang, H., Suh, J.W., Das, S.R., Pluta, J., Craige, C., Yushkevich, P.A.: Multi-atlas segmentation with joint label fusion. IEEE Trans. PAMI 35, 611–623 (2013)

    Article  Google Scholar 

  10. Rohlfing, T., Russakoff, D.B., Maurer Jr., C.R.: Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation. IEEE Trans. Med. Imaging 23, 983–994 (2004)

    Article  Google Scholar 

  11. Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, J.V., Rueckert, D.: Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy. NeuroImage 46, 726–738 (2009)

    Article  Google Scholar 

  12. Heckemann, R.A., Hajnal, J.V., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33, 115–126 (2006)

    Article  Google Scholar 

  13. Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23, 903–921 (2004)

    Article  Google Scholar 

  14. Lötjönen, J.M.P., Wolz, R., Koikkalainen, J.R., Thurfjell, L., Waldemar, G., Soininen, H., Rueckert, D.: Fast and robust multi-atlas segmentation of brain magnetic resonance images. NeuroImage 49, 2352–2365 (2010)

    Article  Google Scholar 

  15. Wang, L., Shi, F., Li, G., Gao, Y., Lin, W., Gilmore, J.H., Shen, D.: Segmentation of neonatal brain MR images using patch-driven level sets. NeuroImage 84, 141–158 (2014)

    Article  Google Scholar 

  16. Srhoj-Egekher, V., Benders, M.J.N.L., Viergever, M.A., Išgum, I.: Automatic neonatal brain tissue segmentation with MRI. Proc. SPIE 8669, 86691K (2013)

    Article  Google Scholar 

  17. Wang, L., Shi, F., Gao, Y., Li, G., Gilmore, J.H., Lin, W., Shen, D.: Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation. NeuroImage 89, 152–164 (2014)

    Article  Google Scholar 

  18. Rousseau, F., Habas, P.A., Studholme, C.: A supervised patch-based approach for human brain labeling. IEEE Trans. Med. Imaging 30, 1852–1862 (2011)

    Article  Google Scholar 

  19. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  20. Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3D brain image segmentation. PAMI 32, 1744–1757 (2010)

    Article  Google Scholar 

  21. Loog, M., Ginneken, B.: Segmentation of the posterior ribs in chest radiographs using iterated contextual pixel classification. IEEE Trans. Med. Imaging 25, 602–611 (2006)

    Article  Google Scholar 

  22. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8 (2008)

    Google Scholar 

  23. Montillo, A., Shotton, J., Winn, J., Iglesias, J., Metaxas, D., Criminisi, A.: Entangled decision forests and their application for semantic segmentation of CT images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 184–196. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  24. Han, X.: learning-boosted label fusion for multi-atlas auto-segmentation. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds.) MLMI 2013. LNCS, vol. 8184, pp. 17–24. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Zikic, D., Glocker, B., Criminisi, A.: Atlas encoding by randomized forests for efficient label propagation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 66–73. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  26. Zikic, D., Glocker, B., Konukoglu, E., Criminisi, A., Demiralp, C., Shotton, J., Thomas, O.M., Das, T., Jena, R., Price, S.J.: Decision forests for tissue-specific segmentation of high-grade gliomas in Multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  27. Criminisi, A., Shotton, J., Bucciarelli, S.: Decision forests with long-range spatial context for organ localization in CT Volumes. In: MICCAI-PMMIA (2009)

    Google Scholar 

  28. Blumenthal, J.D., Zijdenbos, A., Molloy, E., Giedd, J.N.: Motion artifact in magnetic resonance imaging: implications for automated analysis. NeuroImage 16, 89–92 (2002)

    Article  Google Scholar 

  29. Shi, F., Wang, L., Dai, Y., Gilmore, J.H., Lin, W., Shen, D.: Pediatric brain extraction using learning-based meta-algorithm. NeuroImage 62, 1975–1986 (2012)

    Article  Google Scholar 

  30. Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17, 87–97 (1998)

    Article  Google Scholar 

  31. Dai, Y., Shi, F., Wang, L., Wu, G., Shen, D.: iBEAT: a toolbox for infant brain magnetic resonance image processing. Neuroinformatics 11, 211–225 (2013)

    Article  Google Scholar 

  32. Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31, 1116–1128 (2006)

    Article  Google Scholar 

  33. Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vision 57, 137–154 (2004)

    Article  Google Scholar 

  34. Cheng, H., Liu, Z., Yang, L.: Sparsity induced similarity measure for label propagation. In: Proceedings of the ICCV, pp. 317–324 (2009)

    Google Scholar 

  35. Wright, J., Yi, M., Mairal, J., Sapiro, G., Huang, T.S., Shuicheng, Y.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98, 1031–1044 (2010)

    Article  Google Scholar 

  36. Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D.N., Zhou, X.S.: Towards robust and effective shape modeling: sparse shape composition. Med. Image Anal. 16, 265–277 (2012)

    Article  Google Scholar 

  37. Zhang, S., Zhan, Y., Metaxas, D.N.: Deformable segmentation via sparse representation and dictionary learning. Med. Image Anal. 16, 1385–1396 (2012)

    Article  Google Scholar 

  38. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. B 67, 301–320 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  39. Bai, W., Shi, W., O’Regan, D., Tong, T., Wang, H., Jamil-Copley, S., Peters, N., Rueckert, D.: A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images. IEEE Trans. Med. Imaging 32, 1302–1315 (2013)

    Article  Google Scholar 

  40. Coupé, P., Manjón, J., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage 54, 940–954 (2011)

    Article  Google Scholar 

  41. Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C.: A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54, 2033–2044 (2011)

    Article  Google Scholar 

  42. Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23(Supplement 1), S151–S160 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, L. et al. (2014). LINKS: Learning-Based Multi-source IntegratioN FrameworK for Segmentation of Infant Brain Images. In: Menze, B., et al. Medical Computer Vision: Algorithms for Big Data. MCV 2014. Lecture Notes in Computer Science(), vol 8848. Springer, Cham. https://doi.org/10.1007/978-3-319-13972-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13972-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13971-5

  • Online ISBN: 978-3-319-13972-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics