Abstract
Segmentation of infant brain MR images is challenging due to insufficient image quality, severe partial volume effect, and the ongoing maturation and myelination processes. In particular, the image contrast inverts around 6–8 months of age, and the white and gray matter tissues are isointense in both T1- and T2-weighted MR images and thus exhibit the extremely low tissue contrast, which poses the significant challenges for automated segmentation. Most previous studies used multi-atlas label fusion strategy, which has the limitation of equally treating the available multi-modality images and is often computationally expensive. In this paper, we propose a novel learning-based multi-source integration framework for infant brain image segmentation. Specifically, we employ the random forest technique to effectively integrate features from multi-source images together for tissue segmentation. The multi-source images include initially only the multi-modality (T1, T2 and FA) images and later also the iteratively estimated and refined tissue probability maps of gray matter, white matter, and cerebrospinal fluid. Experimental results on 119 infant subjects and MICCAI challenges show that the proposed method achieves better performance than other state-of-the-art automated segmentation methods, with significantly reduction of running time from hours to 5 minutes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Nie, J., Li, G., Wang, L., Gilmore, J.H., Lin, W., Shen, D.: A computational growth model for measuring dynamic cortical development in the first year of life. Cereb. Cortex 22, 2272–2284 (2012)
Li, G., Nie, J., Wang, L., Shi, F., Lyall, A.E., Lin, W., Gilmore, J.H., Shen, D.: Mapping longitudinal hemispheric structural asymmetries of the human cerebral cortex from birth to 2 years of age. Cereb. Cortex 24, 1289–1300 (2013)
Weisenfeld, N.I., Warfield, S.K.: Automatic segmentation of newborn brain MRI. NeuroImage 47, 564–572 (2009)
Xue, H., Srinivasan, L., Jiang, S., Rutherford, M., Edwards, A.D., Rueckert, D., Hajnal, J.V.: Automatic segmentation and reconstruction of the cortex from neonatal MRI. NeuroImage 38, 461–477 (2007)
Gui, L., Lisowski, R., Faundez, T., Hüppi, P.S., Lazeyras, F., Kocher, M.: Morphology-driven automatic segmentation of MR images of the neonatal brain. Med. Image Anal. 16, 1565–1579 (2012)
Wang, L., Shi, F., Yap, P.-T., Gilmore, J.H., Lin, W., Shen, D.: 4D multi-modality tissue segmentation of serial infant images. PLoS ONE 7, e44596 (2012)
Wang, L., Shi, F., Yap, P., Lin, W., Gilmore, J.H., Shen, D.: Longitudinally guided level sets for consistent tissue segmentation of neonates. Hum. Brain Mapp. 34, 956–972 (2013)
Wang, L., Shi, F., Lin, W., Gilmore, J.H., Shen, D.: Automatic segmentation of neonatal images using convex optimization and coupled level sets. NeuroImage 58, 805–817 (2011)
Wang, H., Suh, J.W., Das, S.R., Pluta, J., Craige, C., Yushkevich, P.A.: Multi-atlas segmentation with joint label fusion. IEEE Trans. PAMI 35, 611–623 (2013)
Rohlfing, T., Russakoff, D.B., Maurer Jr., C.R.: Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation. IEEE Trans. Med. Imaging 23, 983–994 (2004)
Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, J.V., Rueckert, D.: Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy. NeuroImage 46, 726–738 (2009)
Heckemann, R.A., Hajnal, J.V., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33, 115–126 (2006)
Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23, 903–921 (2004)
Lötjönen, J.M.P., Wolz, R., Koikkalainen, J.R., Thurfjell, L., Waldemar, G., Soininen, H., Rueckert, D.: Fast and robust multi-atlas segmentation of brain magnetic resonance images. NeuroImage 49, 2352–2365 (2010)
Wang, L., Shi, F., Li, G., Gao, Y., Lin, W., Gilmore, J.H., Shen, D.: Segmentation of neonatal brain MR images using patch-driven level sets. NeuroImage 84, 141–158 (2014)
Srhoj-Egekher, V., Benders, M.J.N.L., Viergever, M.A., Išgum, I.: Automatic neonatal brain tissue segmentation with MRI. Proc. SPIE 8669, 86691K (2013)
Wang, L., Shi, F., Gao, Y., Li, G., Gilmore, J.H., Lin, W., Shen, D.: Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation. NeuroImage 89, 152–164 (2014)
Rousseau, F., Habas, P.A., Studholme, C.: A supervised patch-based approach for human brain labeling. IEEE Trans. Med. Imaging 30, 1852–1862 (2011)
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3D brain image segmentation. PAMI 32, 1744–1757 (2010)
Loog, M., Ginneken, B.: Segmentation of the posterior ribs in chest radiographs using iterated contextual pixel classification. IEEE Trans. Med. Imaging 25, 602–611 (2006)
Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8 (2008)
Montillo, A., Shotton, J., Winn, J., Iglesias, J., Metaxas, D., Criminisi, A.: Entangled decision forests and their application for semantic segmentation of CT images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 184–196. Springer, Heidelberg (2011)
Han, X.: learning-boosted label fusion for multi-atlas auto-segmentation. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds.) MLMI 2013. LNCS, vol. 8184, pp. 17–24. Springer, Heidelberg (2013)
Zikic, D., Glocker, B., Criminisi, A.: Atlas encoding by randomized forests for efficient label propagation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 66–73. Springer, Heidelberg (2013)
Zikic, D., Glocker, B., Konukoglu, E., Criminisi, A., Demiralp, C., Shotton, J., Thomas, O.M., Das, T., Jena, R., Price, S.J.: Decision forests for tissue-specific segmentation of high-grade gliomas in Multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012)
Criminisi, A., Shotton, J., Bucciarelli, S.: Decision forests with long-range spatial context for organ localization in CT Volumes. In: MICCAI-PMMIA (2009)
Blumenthal, J.D., Zijdenbos, A., Molloy, E., Giedd, J.N.: Motion artifact in magnetic resonance imaging: implications for automated analysis. NeuroImage 16, 89–92 (2002)
Shi, F., Wang, L., Dai, Y., Gilmore, J.H., Lin, W., Shen, D.: Pediatric brain extraction using learning-based meta-algorithm. NeuroImage 62, 1975–1986 (2012)
Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17, 87–97 (1998)
Dai, Y., Shi, F., Wang, L., Wu, G., Shen, D.: iBEAT: a toolbox for infant brain magnetic resonance image processing. Neuroinformatics 11, 211–225 (2013)
Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31, 1116–1128 (2006)
Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vision 57, 137–154 (2004)
Cheng, H., Liu, Z., Yang, L.: Sparsity induced similarity measure for label propagation. In: Proceedings of the ICCV, pp. 317–324 (2009)
Wright, J., Yi, M., Mairal, J., Sapiro, G., Huang, T.S., Shuicheng, Y.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98, 1031–1044 (2010)
Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D.N., Zhou, X.S.: Towards robust and effective shape modeling: sparse shape composition. Med. Image Anal. 16, 265–277 (2012)
Zhang, S., Zhan, Y., Metaxas, D.N.: Deformable segmentation via sparse representation and dictionary learning. Med. Image Anal. 16, 1385–1396 (2012)
Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. B 67, 301–320 (2005)
Bai, W., Shi, W., O’Regan, D., Tong, T., Wang, H., Jamil-Copley, S., Peters, N., Rueckert, D.: A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images. IEEE Trans. Med. Imaging 32, 1302–1315 (2013)
Coupé, P., Manjón, J., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage 54, 940–954 (2011)
Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C.: A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54, 2033–2044 (2011)
Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23(Supplement 1), S151–S160 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Wang, L. et al. (2014). LINKS: Learning-Based Multi-source IntegratioN FrameworK for Segmentation of Infant Brain Images. In: Menze, B., et al. Medical Computer Vision: Algorithms for Big Data. MCV 2014. Lecture Notes in Computer Science(), vol 8848. Springer, Cham. https://doi.org/10.1007/978-3-319-13972-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-13972-2_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13971-5
Online ISBN: 978-3-319-13972-2
eBook Packages: Computer ScienceComputer Science (R0)