LINKS: Learning-Based Multi-source IntegratioN FrameworK for Segmentation of Infant Brain Images

  • Li Wang
  • Yaozong Gao
  • Feng Shi
  • Gang Li
  • John H. Gilmore
  • Weili Lin
  • Dinggang ShenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8848)


Segmentation of infant brain MR images is challenging due to insufficient image quality, severe partial volume effect, and the ongoing maturation and myelination processes. In particular, the image contrast inverts around 6–8 months of age, and the white and gray matter tissues are isointense in both T1- and T2-weighted MR images and thus exhibit the extremely low tissue contrast, which poses the significant challenges for automated segmentation. Most previous studies used multi-atlas label fusion strategy, which has the limitation of equally treating the available multi-modality images and is often computationally expensive. In this paper, we propose a novel learning-based multi-source integration framework for infant brain image segmentation. Specifically, we employ the random forest technique to effectively integrate features from multi-source images together for tissue segmentation. The multi-source images include initially only the multi-modality (T1, T2 and FA) images and later also the iteratively estimated and refined tissue probability maps of gray matter, white matter, and cerebrospinal fluid. Experimental results on 119 infant subjects and MICCAI challenges show that the proposed method achieves better performance than other state-of-the-art automated segmentation methods, with significantly reduction of running time from hours to 5 minutes.


Fractional Anisotropy Random Forest Tissue Segmentation Classification Forest Training Subject 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nie, J., Li, G., Wang, L., Gilmore, J.H., Lin, W., Shen, D.: A computational growth model for measuring dynamic cortical development in the first year of life. Cereb. Cortex 22, 2272–2284 (2012)CrossRefGoogle Scholar
  2. 2.
    Li, G., Nie, J., Wang, L., Shi, F., Lyall, A.E., Lin, W., Gilmore, J.H., Shen, D.: Mapping longitudinal hemispheric structural asymmetries of the human cerebral cortex from birth to 2 years of age. Cereb. Cortex 24, 1289–1300 (2013)CrossRefGoogle Scholar
  3. 3.
    Weisenfeld, N.I., Warfield, S.K.: Automatic segmentation of newborn brain MRI. NeuroImage 47, 564–572 (2009)CrossRefGoogle Scholar
  4. 4.
    Xue, H., Srinivasan, L., Jiang, S., Rutherford, M., Edwards, A.D., Rueckert, D., Hajnal, J.V.: Automatic segmentation and reconstruction of the cortex from neonatal MRI. NeuroImage 38, 461–477 (2007)CrossRefGoogle Scholar
  5. 5.
    Gui, L., Lisowski, R., Faundez, T., Hüppi, P.S., Lazeyras, F., Kocher, M.: Morphology-driven automatic segmentation of MR images of the neonatal brain. Med. Image Anal. 16, 1565–1579 (2012)CrossRefGoogle Scholar
  6. 6.
    Wang, L., Shi, F., Yap, P.-T., Gilmore, J.H., Lin, W., Shen, D.: 4D multi-modality tissue segmentation of serial infant images. PLoS ONE 7, e44596 (2012)CrossRefGoogle Scholar
  7. 7.
    Wang, L., Shi, F., Yap, P., Lin, W., Gilmore, J.H., Shen, D.: Longitudinally guided level sets for consistent tissue segmentation of neonates. Hum. Brain Mapp. 34, 956–972 (2013)CrossRefGoogle Scholar
  8. 8.
    Wang, L., Shi, F., Lin, W., Gilmore, J.H., Shen, D.: Automatic segmentation of neonatal images using convex optimization and coupled level sets. NeuroImage 58, 805–817 (2011)CrossRefGoogle Scholar
  9. 9.
    Wang, H., Suh, J.W., Das, S.R., Pluta, J., Craige, C., Yushkevich, P.A.: Multi-atlas segmentation with joint label fusion. IEEE Trans. PAMI 35, 611–623 (2013)CrossRefGoogle Scholar
  10. 10.
    Rohlfing, T., Russakoff, D.B., Maurer Jr., C.R.: Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation. IEEE Trans. Med. Imaging 23, 983–994 (2004)CrossRefGoogle Scholar
  11. 11.
    Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, J.V., Rueckert, D.: Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy. NeuroImage 46, 726–738 (2009)CrossRefGoogle Scholar
  12. 12.
    Heckemann, R.A., Hajnal, J.V., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33, 115–126 (2006)CrossRefGoogle Scholar
  13. 13.
    Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23, 903–921 (2004)CrossRefGoogle Scholar
  14. 14.
    Lötjönen, J.M.P., Wolz, R., Koikkalainen, J.R., Thurfjell, L., Waldemar, G., Soininen, H., Rueckert, D.: Fast and robust multi-atlas segmentation of brain magnetic resonance images. NeuroImage 49, 2352–2365 (2010)CrossRefGoogle Scholar
  15. 15.
    Wang, L., Shi, F., Li, G., Gao, Y., Lin, W., Gilmore, J.H., Shen, D.: Segmentation of neonatal brain MR images using patch-driven level sets. NeuroImage 84, 141–158 (2014)CrossRefGoogle Scholar
  16. 16.
    Srhoj-Egekher, V., Benders, M.J.N.L., Viergever, M.A., Išgum, I.: Automatic neonatal brain tissue segmentation with MRI. Proc. SPIE 8669, 86691K (2013)CrossRefGoogle Scholar
  17. 17.
    Wang, L., Shi, F., Gao, Y., Li, G., Gilmore, J.H., Lin, W., Shen, D.: Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation. NeuroImage 89, 152–164 (2014)CrossRefGoogle Scholar
  18. 18.
    Rousseau, F., Habas, P.A., Studholme, C.: A supervised patch-based approach for human brain labeling. IEEE Trans. Med. Imaging 30, 1852–1862 (2011)CrossRefGoogle Scholar
  19. 19.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefzbMATHGoogle Scholar
  20. 20.
    Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3D brain image segmentation. PAMI 32, 1744–1757 (2010)CrossRefGoogle Scholar
  21. 21.
    Loog, M., Ginneken, B.: Segmentation of the posterior ribs in chest radiographs using iterated contextual pixel classification. IEEE Trans. Med. Imaging 25, 602–611 (2006)CrossRefGoogle Scholar
  22. 22.
    Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8 (2008)Google Scholar
  23. 23.
    Montillo, A., Shotton, J., Winn, J., Iglesias, J., Metaxas, D., Criminisi, A.: Entangled decision forests and their application for semantic segmentation of CT images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 184–196. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Han, X.: learning-boosted label fusion for multi-atlas auto-segmentation. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds.) MLMI 2013. LNCS, vol. 8184, pp. 17–24. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Zikic, D., Glocker, B., Criminisi, A.: Atlas encoding by randomized forests for efficient label propagation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 66–73. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  26. 26.
    Zikic, D., Glocker, B., Konukoglu, E., Criminisi, A., Demiralp, C., Shotton, J., Thomas, O.M., Das, T., Jena, R., Price, S.J.: Decision forests for tissue-specific segmentation of high-grade gliomas in Multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    Criminisi, A., Shotton, J., Bucciarelli, S.: Decision forests with long-range spatial context for organ localization in CT Volumes. In: MICCAI-PMMIA (2009)Google Scholar
  28. 28.
    Blumenthal, J.D., Zijdenbos, A., Molloy, E., Giedd, J.N.: Motion artifact in magnetic resonance imaging: implications for automated analysis. NeuroImage 16, 89–92 (2002)CrossRefGoogle Scholar
  29. 29.
    Shi, F., Wang, L., Dai, Y., Gilmore, J.H., Lin, W., Shen, D.: Pediatric brain extraction using learning-based meta-algorithm. NeuroImage 62, 1975–1986 (2012)CrossRefGoogle Scholar
  30. 30.
    Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17, 87–97 (1998)CrossRefGoogle Scholar
  31. 31.
    Dai, Y., Shi, F., Wang, L., Wu, G., Shen, D.: iBEAT: a toolbox for infant brain magnetic resonance image processing. Neuroinformatics 11, 211–225 (2013)CrossRefGoogle Scholar
  32. 32.
    Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31, 1116–1128 (2006)CrossRefGoogle Scholar
  33. 33.
    Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vision 57, 137–154 (2004)CrossRefGoogle Scholar
  34. 34.
    Cheng, H., Liu, Z., Yang, L.: Sparsity induced similarity measure for label propagation. In: Proceedings of the ICCV, pp. 317–324 (2009)Google Scholar
  35. 35.
    Wright, J., Yi, M., Mairal, J., Sapiro, G., Huang, T.S., Shuicheng, Y.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98, 1031–1044 (2010)CrossRefGoogle Scholar
  36. 36.
    Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D.N., Zhou, X.S.: Towards robust and effective shape modeling: sparse shape composition. Med. Image Anal. 16, 265–277 (2012)CrossRefGoogle Scholar
  37. 37.
    Zhang, S., Zhan, Y., Metaxas, D.N.: Deformable segmentation via sparse representation and dictionary learning. Med. Image Anal. 16, 1385–1396 (2012)CrossRefGoogle Scholar
  38. 38.
    Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. B 67, 301–320 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Bai, W., Shi, W., O’Regan, D., Tong, T., Wang, H., Jamil-Copley, S., Peters, N., Rueckert, D.: A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images. IEEE Trans. Med. Imaging 32, 1302–1315 (2013)CrossRefGoogle Scholar
  40. 40.
    Coupé, P., Manjón, J., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage 54, 940–954 (2011)CrossRefGoogle Scholar
  41. 41.
    Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C.: A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54, 2033–2044 (2011)CrossRefGoogle Scholar
  42. 42.
    Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23(Supplement 1), S151–S160 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Li Wang
    • 1
  • Yaozong Gao
    • 1
    • 2
  • Feng Shi
    • 1
  • Gang Li
    • 1
  • John H. Gilmore
    • 3
  • Weili Lin
    • 1
  • Dinggang Shen
    • 1
    Email author
  1. 1.Department of Radiology and BRICUniversity of North CarolinaChapel HillUSA
  2. 2.Department of Computer ScienceUniversity of North CarolinaChapel HillUSA
  3. 3.Department of PsychiatryUniversity of North CarolinaChapel HillUSA

Personalised recommendations