Skip to main content

CT Prostate Deformable Segmentation by Boundary Regression

  • Conference paper
  • First Online:
Medical Computer Vision: Algorithms for Big Data (MCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8848))

Included in the following conference series:

Abstract

Automatic and accurate prostate segmentation from CT images is challenging due to low image contrast, uncertain organ motion, and variable organ appearance in different patient images. To deal with these challenges, we propose a new prostate boundary detection method with a boundary regression strategy for prostate deformable segmentation. Different from the previous regression-based segmentation methods, which train one regression forest for each specific point (e.g., each point on a shape model), our method learns a single global regression forest to predict the nearest boundary points from each voxel for enhancing the entire prostate boundary. The experimental results show that our proposed boundary regression method outperforms the conventional prostate classification method. Compared with other state-of-the-art methods, our method also shows a competitive performance.

Y. Shao and Y. Gao—Co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A Snapshotof Prostate Cancer. http://www.cancer.gov/researchandfunding/snapshots/pdf/Prostate-Snapshot.pdf

  2. Foskey, M., Davis, B., Goyal, L., Chang, S., Chaney, E., Strehl, N., Tomei, S., Rosenman, J., Joshi, S.: Large deformation three-dimensional image registration in image-guided radiation therapy. Phys. Med. Biol. 50, 5869 (2005)

    Article  Google Scholar 

  3. Feng, Q., Foskey, M., Chen, W., Shen, D.: Segmenting CT prostate images using population and patient-specific statistics for radiotherapy. Med. Phys. 37, 4121–4132 (2010)

    Article  Google Scholar 

  4. Liao, S., Gao, Y., Lian, J., Shen, D.: Sparse patch-based label propagation for accurate prostate localization in CT images. IEEE Trans. Med. Imaging 32, 419–434 (2013)

    Article  Google Scholar 

  5. Gao, Y., Liao, S., Shen, D.: Prostate segmentation by sparse representation based classification. Med. Phys. 39, 6372–6387 (2012)

    Article  Google Scholar 

  6. Costa, M.J., Delingette, H., Novellas, S., Ayache, N.: Automatic segmentation of bladder and prostate using coupled 3D deformable models. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 252–260. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Lu, C., Zheng, Y., Birkbeck, N., Zhang, J., Kohlberger, T., Tietjen, C., Boettger, T., Duncan, J.S., Zhou, S.: Precise segmentation of multiple organs in CT volumes using learning-based approach and information theory. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 462–469. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Chen, S., Lovelock, D.M., Radke, R.J.: Segmenting the prostate and rectum in CT imagery using anatomical constraints. Med. Image Anal. 15, 1–11 (2011)

    Article  MATH  Google Scholar 

  9. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  10. Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression Forests for Efficient Anatomy Detection and Localization in CT Studies. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds.) MICCAI 2010. LNCS, vol. 6533, pp. 106–117. Springer, Heidelberg (2011)

    Google Scholar 

  11. Lindner, C., Thiagarajah, S., Wilkinson, J.M., Consortium, T., Wallis, G., Cootes, T.: Fully automatic segmentation of the proximal femur using random forest regression voting. IEEE Trans. Med. Imaging 32, 1462–1472 (2013)

    Article  Google Scholar 

  12. Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3d brain image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1744–1757 (2010)

    Article  Google Scholar 

  13. Zhan, Y., Dewan, M., Harder, M., Krishnan, A., Zhou, X.S.: Robust automatic knee mr slice positioning through redundant and hierarchical anatomy detection. IEEE Trans. Med. Imaging 30, 2087–2100 (2011)

    Article  Google Scholar 

  14. Shen, D., Herskovits, E.H., Davatzikos, C.: An adaptive-focus statistical shape model for segmentation and shape modeling of 3-D brain structures. IEEE Trans. Med. Imaging 20, 257–270 (2001)

    Article  Google Scholar 

  15. Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D.N., Zhou, X.S.: Towards robust and effective shape modeling: sparse shape composition. Med. Image Anal. 16, 265–277 (2012)

    Article  Google Scholar 

  16. Zhang, S., Zhan, Y., Metaxas, D.N.: Deformable segmentation via sparse representation and dictionary learning. Med. Image Anal. 16, 1385–1396 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Shao, Y., Gao, Y., Yang, X., Shen, D. (2014). CT Prostate Deformable Segmentation by Boundary Regression. In: Menze, B., et al. Medical Computer Vision: Algorithms for Big Data. MCV 2014. Lecture Notes in Computer Science(), vol 8848. Springer, Cham. https://doi.org/10.1007/978-3-319-13972-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13972-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13971-5

  • Online ISBN: 978-3-319-13972-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics