A Method of Three-Dimensional Visualization of Molecular Processes of Apoptosis

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8853)


Apoptosis or programmed cell death plays an important role in many physiological states and diseases. Detection of apoptotic cells, tracing the development of apoptosis, drug development and regulation of apoptosis are an important parts of basic research in medicine. A large number of models have been developed that are based on the differential equations of the chemical kinetics, and can be expressed in a uniform notation using some XML-based languages, such as SBML and CellML. We describe the CellML and the simulation environment OpenCell herein. These tools can display models schematically and output results in the form of graphs showing time dependencies of component concentrations. However, at the present time we do not have a software that could represent the results of the modelling in a form of animations as well as in the form of 3-D models. Using descriptive as well as quantitative models we discuss approaches to visualize the biological processes described by the apoptosis models. The quantitative method was implemented using a 3-D visualization of the molecular biological processes modelled by chemical kinetic equations. The quantitative parameters in our visualization scheme are determined based on the kinetic equations governing the participating components, so our visualization is not only qualitative but also quantitative. To implement this visualization, the C# software and a database of 3-D forms that model molecular complexes are developed. We present 3-D visualization of the molecular processes described in the mathematical model for the mitochondria-dependent apoptosis proposed by Bagci et al. [22] as a case study.


Apoptosis Visualization Chemical kinetics Molecular biology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Muchmore, S.W., Sattler, M., Liang, H., Meadows, R.P., Harlan, J.E., Yoon, H.S., Nettesheim, D., Chang, B.S., Thompson, C.B., Wong, S.-L., Ng, S.-C., Fesik, S.W.: X-ray and NMR structure of human Bcl-xL, an inhibitor of programmedиcell death. Nature 381(6580), 335–341 (1996)CrossRefGoogle Scholar
  2. 2.
    Green, D.R.: Means to an End: Apoptosis and other Cell Death Mechanisms, p. 250. Cold Spring Harbour Laboratory Press, NY (2010)Google Scholar
  3. 3.
    Antonsson, B., Conti, F., Ciavatta, A.M., Montessuit, S., Lewis, S., Martinou, I., Bernasconi, L., Bernard, A., Mermod, J.-J., Mazzei, G., Maundrell, K., Gambale, F., Sadoul, R., Martinou, J.-C.: Inhibition of Bax channel-forming activity by Bcl-2. Science 277(5324), 370–372 (1997)CrossRefGoogle Scholar
  4. 4.
    Minn, A.J., Vélez, P., Schendel, S.L., Liang, H., Muchmore, S.W., Fesik, S.W., Fill, M., Thompson, C.B.: Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 385(6614), 353–357 (1997)CrossRefGoogle Scholar
  5. 5.
    Schendel, S.L., Xie, Z., Montal, M.O., Matsuyama, S., Montal, M., Reed, J.C.: Channel formation by antiapoptotic protein Bcl-2. Proc. Natl. Acad. Sci. U.S.A 94(10), 5113–5118 (1997)CrossRefGoogle Scholar
  6. 6.
    Schlesinger, P.H., Gross, A., Yin, X.-M., Yamamoto, K., Saito, M., Waksman, G., Korsmeyer, S.J.: Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2. Proc. Natl. Acad. Sci. U.S.A. 94(21), 11357–11362 (1997)CrossRefGoogle Scholar
  7. 7.
    Peixoto, P.M., Ryu, S.-Y., Bombrun, A., Antonsson, B., Kinnally, K.W.: MAC inhibitors suppress mitochondrial apoptosis. Biochem. J. 423(3), 381–387 (2009)CrossRefGoogle Scholar
  8. 8.
    Czabotar, P.E., Westphal, D., Dewson, G., Ma, S., Hockings, C., Fairlie, W.D., Lee, E.F., Yao, S., Robin, A.Y., Smith, B.J., Huang, David C.S., Kluck, R.M., Adams, J.M., Colman, P.M.: Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 152(3), 519–531 (2013)CrossRefGoogle Scholar
  9. 9.
    Kushnareva, Y., Andreyev, A.Y., Kuwana, T., Newmeyer, D.D.: Bax activation initiates the assembly of a multimeric catalyst that facilitates Bax pore formation in mitochondrial outer membranes. PLoS Biol. 10(9), e1001394 (2012)CrossRefGoogle Scholar
  10. 10.
    Souers, A.J., Leverson, J.D., Boghaert, E.R., Ackler, S.L., Catron, N.D., Chen, J., Dayton, B.D., Ding, H., Enschede, S.H., Fairbrother, W.J., Huang, D.C.S., Hymowitz, S.G., Jin, S., Khaw, S.L., Kovar, P.J., Lam, L.T., Lee, J., Maecker, H.L., Marsh, K.C., Mason, K.D., Mitten, M.J., Nimmer, P.M., Oleksijew, A., Park, C.H., Park, C.-M., Phillips, D.C., Roberts, A.W., Sampath, D., Seymour, J.F., Smith, M.L., Sullivan, G.M., Tahir, S.K., Tse, C., Wendt, M.D., Xiao, Yu., Xue, J.C., Zhang, H., Humerickhouse, R.A., Rosenberg, S.H., Elmore, S.W.: ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19(2), 202–208 (2013)CrossRefGoogle Scholar
  11. 11.
    Muhamedyev, R., Mansharipova, A., Muhamedyeva, E.: Visualization of Biological Processes Described by Models of Apoptosis. Life Science Journal 11(10), 320–327 (2014). ISSN:1097-8135Google Scholar
  12. 12.
    Garny, A., Nickerson, D.P., Cooper, J., dos Santos, R.W., Miller, A.K., McKeever, S., Nielsen, P.M., Hunter, P.J.: CellML and associated tools and techniques. Phil. Trans. R. Soc. A 2008, 366 (2008). doi: 10.1098/rsta.2008.0094. Published 13 SeptemberGoogle Scholar
  13. 13.
    OpenCell (May 20, 2014).
  14. 14.
    Rangamani, P., Sirovich, L.: Survival and apoptotic pathways initiated by TNF-alpha: modeling and predictions. Biotechnology and Bioengineering 97(5), 1216–1229 (2007)CrossRefGoogle Scholar
  15. 15.
    Bagci, E.Z., Vodovotz, Y., Billiar, T.R., Ermentrout, B., Bahar, I.: Computational insights on the competing effects of nitric oxide in regulating apoptosis (2009) (May 20, 2014).
  16. 16.
    Bagci, E.Z., Vodovotz, Y., Billiar, T.R., et al.: Bistability in Apoptosis: Roles of Bax, Bcl-2 and Mitochondrial Permeability Transition Pores. Biophysical Journal 90, 1546–1559 (2006). PubMed ID: 16339882CrossRefGoogle Scholar
  17. 17.
    Wimalaratne, S.M., Halstead, M.D.B., Lloyd, C.M., Cooling, M.T., Crampin, E.J., Nielsen, P.F.: A method for visualizing CellML models. Bioinformatics 25(22), 3012–3019 (2009). doi: 10.1093/bioinformatics/btp495 CrossRefGoogle Scholar
  18. 18.
    Protein Data Bank (2014).
  19. 19.
    Brenner, S.: The genetics of Caenorhabditis elegans. Genetics 77(1), 71–94 (1974)Google Scholar
  20. 20.
    Sulston, J.E., Horvitz, H.R.: Post-embryonic cell lineages of the nematode. Caenorhabditis elegans. Dev. Biol. 56(1), 110–156 (1977)Google Scholar
  21. 21.
    Sulston, J.E., Schierenberg, E., White, J.G., Thomson, J.N.: The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100(1), 64–119 (1983)CrossRefGoogle Scholar
  22. 22.
    White, J.G., Southgate, E., Thomson, J.N., Brenner, S.: The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B, Biol. Scien. 314(1165), 1–340 (1986)CrossRefGoogle Scholar
  23. 23.
    Wang, X., Yang, C., Chai, J., Shi, Y., Xue, D.: Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. Science 298(5598), 1587–1892 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.CSSE and T DepartmentInternational IT UniversityAlmatyKazakhstan
  2. 2.Information System Management InstituteRigaLatvia
  3. 3.Kazakh-Russian Medical UniversityAlmatyKazakhstan
  4. 4.Riga Technical UniversityRigaLatvia
  5. 5.Institute of Solid State PhysicsUniversity of LatviaRigaLatvia

Personalised recommendations