A Workflow Analysis for Implementing AR-Based Maintenance Procedures

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8853)


The widespread adoption of mobile devices is giving everyone access to augmented reality systems, possibly involving a huge number of people in AR-based apps, with a pervasive social impact that cannot be neglected. AR systems are becoming affordable to everyone and especially useful in the maintenance field. This report aims to describe in a clear and accessible way the workflow to design and develop an augmented reality (AR) application for supporting maintenance procedures. The main focus of this paper is the evaluation of markerless tracking systems, as they could provide environment-independent solutions. The tests performed on a real use case outline the robustness of 3D CAD tracking with respect to other solutions.


Augmented Reality Maintenance Tracking Systems  Robustness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van Krevelen, D.W.F., Poelman, R.: A Survey of Augmented Reality Technologies, Applications and Limitations. The International Journal of Virtual Reality 9, 1–20 (2010)Google Scholar
  2. 2.
    The Google Glass project web site.
  3. 3.
    The Innovega web site.
  4. 4.
    Henderson, S.J., Feiner, S.: Exploring the Benefits of Augmented Reality Documentation for Maintenance and Repair. IEEE Trans. on Visualization and Computer Graphics 17, 1355–1368 (2011)CrossRefGoogle Scholar
  5. 5.
    Terenzi, G., Basile, G.: Smart Maintenance: An Augmented Reality Platform for Training and Fields Operations in the Manufacturing Industry. ARMEDIA Augmented Reality Blog (2014).
  6. 6.
    The SnapShop web site.
  7. 7.
    The Ikea web site.
  8. 8.
    The Ingress web site.
  9. 9.
    The Wikitude Web Browser site.
  10. 10.
    Ong, S.K., Yuan, M.L., Nee, A.Y.C.: Augmented Reality Applications in Manufacturing: A Survey. Intl. J. Production Research 46, 2707–2742 (2008)CrossRefzbMATHGoogle Scholar
  11. 11.
    Neea, A.Y.C., Onga, S.K., Chryssolourisb, G., Mourtzisb, D.: Augmented reality applications in design and manufacturing. CIRP Annals - Manufacturing Technology 61, 657–679 (2012)CrossRefGoogle Scholar
  12. 12.
    Feiner, S., Blair, M., Dorée, S.: Knowledge-based Augmented Reality. Communications of the ACM 36, 52–62 (1993)CrossRefGoogle Scholar
  13. 13.
    Ke, C., Kang, B., Chen, D., Li, X.: An Augmented Reality-based application for equipment maintenance. In: Tao, J., Tan, T., Picard, R.W. (eds.) ACII 2005. LNCS, vol. 3784, pp. 836–841. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Savioja, P., Järvinen, P., Karhela, T., Siltanen, P., Woodward, C.: Developing a Mobile, Service-Based Augmented Reality Tool for Modern Maintenance Work. In: Shumaker, R. (ed.) HCII 2007 and ICVR 2007. LNCS, vol. 4563, pp. 554–563. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Kahn, S., Olbrich, M., Engelke, T., Keil, J., Riess, P., Webel, S., Graf, H., Bockholt, U., Picinbono, G.: Beyond 3D “As-Built” Information Using Mobile AR Enhancing the Building Lifecycle Management. In: 12th International Conference on Cyberworlds, pp. 29-36. IEEE Press (2012)Google Scholar
  16. 16.
  17. 17.
    The Metaio web site.
  18. 18.
    The Augmented Reality Trends web site.
  19. 19.
    The Vuforia web site.
  20. 20.
    The Layar web site.
  21. 21.
    The Blender web site.
  22. 22.
    The EASE-R3 project web site.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Dipartimento di Automatica e InformaticaPolitecnico di TorinoTurinItaly
  2. 2.Fidia S.p.A.San Mauro TorineseItaly

Personalised recommendations