Skip to main content

Removal of Cu (II) from Aqueous Solutions Using Colloidal Pyrite Calcined Under Inert Atmosphere

  • Conference paper
Proceedings of the 11th International Congress for Applied Mineralogy (ICAM)

Part of the book series: Springer Geochemistry/Mineralogy ((SPRINGERGEOCHEM))

  • 1348 Accesses

Abstract

A natural colloidal pyrite calcined in N2 atmosphere was utilized to remove Cu (II) from aqueous solutions in the present work. Under the effect of calcination temperature, initial solution pH, reaction time, initial Cu(II) concentration, sorption temperature, foreign ions, and the dissolved oxygen (DO) on Cu(II) removal were investigated. The results showed that colloidal pyrite calcined at 500–550 °C (CCPy) has a most promising potential for Cu(II) removal. The increase of pH, initial Cu(II) concentration, and reaction time benefited the improvement of Cu(II) removal efficiency. The isothermal adsorption data of CCPy were well described by Langmuir isotherms and the thermodynamic parameters (ΔG < 0, ΔH > 0), indicating the endothermic nature of Cu(II) sorption on CCPy. The presence of most common ions in acid mine drainage and DO just had little influence on the Cu(II) uptake. The observation implied that CCPy is a low-cost, abundant material for Cu removal from Cu waters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wei X, Viadero RC, Bhojappa JS (2008) Phosphorus removal by acid mine drainage sludge from secondary effluents of municipal wastewater treatment plants. Water Res 42:3275–3284

    Article  Google Scholar 

  2. Cheng SA, Dempsey BA, Logan BE (2007) Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Environ Sci Technol 41:8149–8153

    Article  Google Scholar 

  3. Buzzia DC, Viegasb LS, Rodriguesc MAS, Bernardesb AM, Tenórioa JAS (2013) Water recovery from acid mine drainage by electrodialysis. Miner Eng 40:82–89

    Article  Google Scholar 

  4. Lin YT, Huang CP (2008) Reduction of chromium (VI) by pyrite in dilute aqueous solutions. Sep Purif Technol 63:191–199

    Article  Google Scholar 

  5. Descostes M, Schlegel ML, Eglizaud N, Descamps F, Miserque F, Simoni E (2010) Uptake of uranium and trace elements in pyrite (FeS2) suspensions. Geochim Cosmochim Acta 74:1551–1562

    Article  Google Scholar 

  6. Han DS, Batchelor B, Abdel-Wahab A (2012) Sorption of selenium (IV) and selenium (VI) onto synthetic pyrite (FeS2): spectroscopic and microscopic analyses. J Colloid Interface Sci 368:496–504

    Article  Google Scholar 

  7. Jeong HY, Han YS, Park SW, Hayes KF (2010) Aerobic oxidation of mackinawite (FeS) and its environmental implication for arsenic mobilization. Geochim Cosmochim Acta 74:3182–3198

    Article  Google Scholar 

  8. Lu AH, Zhong SJ, Chen J, Shi JX, Tang JL, Lu XY (2006) Removal of Cr (VI) and Cr (III) from aqueous solutions and industrial wastewaters by natural clino-pyrrhotite. Environ Sci Technol 40:3064–3069

    Article  Google Scholar 

  9. Ozverdi A, Erdem M (2006) Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide. J Hazard Mater 137:626–632

    Article  Google Scholar 

  10. Jeong HY, Sun K, Hayes KF (2010) Microscopic and spectroscopic characterization of Hg (II) immobilization by Mackinawite (FeS). Environ Sci Technol 44:7476–7483

    Article  Google Scholar 

  11. Erdem M, Ozverdi A (2006) Kinetics and thermodynamics of Cd (II) adsorption onto pyrite and synthetic iron sulphide. Sep Purif Technol 51:240–246

    Article  Google Scholar 

  12. Coles CA, Rao R, Yong RN (2000) Lead and cadmium interactions with Mackinawite: retention mechanisms and the role of pH. Environ Sci Technol 34:996–1000

    Article  Google Scholar 

  13. Chandra AP, Puskar L, Simpson DJ, Gerson AR (2012) Copper and xanthate adsorption onto pyrite surfaces: implications for mineral separation through flotation. Int J Miner Process 114–117:16–26

    Article  Google Scholar 

  14. Awual MR, Yaita T, El-Safty SA, Shiwaku H, Suzuki S, Okamoto Y (2013) Copper (II) ions capturing from water using ligand modified a new type mesoporous adsorbent. Chem Eng J 221:322–330

    Article  Google Scholar 

  15. Larous S, Meniai AH, Lehocine MB (2005) Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust. Desalination 185:483–490

    Article  Google Scholar 

  16. Integrated wastewater discharge Standard (1996) GB 8978-1996, China.

    Google Scholar 

  17. Chen TH, Yang Y, Chen D, Li P, Shi YD, Zhu X (2012) The structural evolution of heat-treated colloidal pyrite under inert atmosphere and its application for the purification of Cu (II) ion from wastewater. Environ Eng Manag 12(7):1411–1416.

    Google Scholar 

  18. Arnold RG (1967) Range in composition and structure of 82 natural terrestrial pyrrhotites. Can Mineral 9:31–50

    Google Scholar 

  19. Janzen MP, Nicholson RV, Scharer JM (2000) Pyrrhotite reaction kinetics: reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution. Geochim Cosmochim Acta 64:1511–1522

    Article  Google Scholar 

  20. Nicholson RV, Scharer JM (1994) Laboratory studies of pyrrhotite oxidation kinetics. Environ Geochem Sulfide Oxid 550:14–30

    Article  Google Scholar 

  21. Thomas JE, Skinner WM, Smart RSC (2003) A comparison of the dissolution behavior of troilite with other iron (II) sulfides; implications of structure. Geochim Cosmochim Acta 67:831–843

    Article  Google Scholar 

  22. Jackson E (1986) Hydrometallurgical extraction and reclamation. Wiley, New York

    Google Scholar 

  23. Ma W, Tobin JM (2004) Determination and modelling of effects of pH on peat biosorption of chromium, copper and cadmium. Biochem Eng J 18:33–40

    Article  Google Scholar 

  24. Fornasiero D, Eijt V, Ralston J (1992) An electrokinetic study of pyrite oxidation. J Colloid Interface Sci 62:63–73

    Google Scholar 

  25. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295

    Article  Google Scholar 

  26. Freundlich HMF (1906) Uber die adsorption in lasungen. J Phys Chem 57:385–470

    Google Scholar 

  27. Li N, Zhang LD, Chen YZ, Tian Y, Wang HM (2011) Adsorption behavior of Cu(II) onto titanate nanofibers prepared by alkali treatment. J Hazard Mater 189:265–272

    Article  Google Scholar 

  28. Martinez CE, Mcbride MB (1998) Solubility of Cd2+, Cu2+, Pb2+, and Zn2+ in aged coprecipitates with amorphous iron hydroxides. Environ Sci Technol 32:743–748

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhu Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yang, Y., Chen, T., Li, P., Liu, H., Shi, Y., Zhan, X. (2015). Removal of Cu (II) from Aqueous Solutions Using Colloidal Pyrite Calcined Under Inert Atmosphere. In: Dong, F. (eds) Proceedings of the 11th International Congress for Applied Mineralogy (ICAM). Springer Geochemistry/Mineralogy. Springer, Cham. https://doi.org/10.1007/978-3-319-13948-7_44

Download citation

Publish with us

Policies and ethics