Abstract
Graphene is an amazing material with unique electrical and optical properties that have never been observed in conventional materials. Graphene can absorb light from ultraviolet to infrared and transit carriers at a speed of 1/300 of light, which make graphene an excellent candidate for optoelectronic applications. Graphene composites consisting of graphene and other materials combine the high carrier mobility property of graphene and the excellent light absorption properties of other semiconductors , which are ideal for development of next-generation optoelectronic devices, especially photodetectors . In this chapter, we review the recent progress of graphene composite photodetectors with significant performance improvement compared to the original graphene photodetectors and discuss its future developments. We consider that graphene composite photodetectors would play an important role in future optical interconnect and imaging systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- CVD:
-
Chemical vapor deposition
- CNT:
-
Carbon nanotube
- OLED:
-
Organic light emitting devices
- NW:
-
Nanowire
- QDs:
-
Quantum dots
- FET:
-
Field-effect transistor
- MSM:
-
Metal-semiconductor-metal
- IR:
-
Infrared
- UV:
-
Ultraviolet
- THz:
-
Terahertz
Reference
Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183-191 (2007). doi:10.1038/Nmat1849
Morozov, S.V., Novoselov, K.S., Katsnelson, M.I., Schedin, F., Elias, D.C., Jaszczak, J.A., Geim, A.K.: Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100(1), 016602 (2008). doi:10.1103/Physrevlett.100.016602
Mayorov, A.S., Gorbachev, R.V., Morozov, S.V., Britnell, L., Jalil, R., Ponomarenko, L.A., Blake, P., Novoselov, K.S., Watanabe, K., Taniguchi, T., Geim, A.K.: Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature. Nano Lett. 11(6), 2396-2399 (2011). doi:10.1021/Nl200758b
Lee, C., Wei, X.D., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385-388 (2008). doi::10.1126/science.1157996
Balandin, A.A., Ghosh, S., Bao, W.Z., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902-907 (2008). doi:10.1021/Nl0731872
Balandin, A.A., Ghosh, S., Nika, D.L., Pokatilov, E.P.: Thermal Conduction in Suspended Graphene Layers. Fuller. Nanotub. Car. N. 18(4-6), 474-486 (2010). doi:10.1080/1536383x.2010.487785
Choi, H., Borondics, F., Siegel, D.A., Zhou, S.Y., Martin, M.C., Lanzara, A., Kaindl, R.A.: Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene. Appl. Phys. Lett. 94, 172102 (2009). doi:10.1063/1.3122348
Zhao, W.S., Shi, K.F., Lu, Z.L.: Greatly enhanced ultrabroadband light absorption by monolayer graphene. Opt. Lett. 38(21), 4342-4345 (2013). doi:10.1364/Ol.38.004342
Liao, A.D., Wu, J.Z., Wang, X.R., Tahy, K., Jena, D., Dai, H.J., Pop, E.: Thermally Limited Current Carrying Ability of Graphene Nanoribbons. Phys. Rev. Lett. 106(25), 256801 (2011). doi:10.1103/Physrevlett.106.256801
Bae, M.H., Islam, S., Dorgan, V.E., Pop, E.: Scaling of High-Field Transport and Localized Heating in Graphene Transistors. ACS Nano 5(10), 7936-7944 (2011). doi:10.1021/nn202239y
Pop, E., Varshney, V., Roy, A.K.: Thermal properties of graphene: Fundamentals and applications. Mrs. Bull. 37(12), 1273-1281 (2012). doi:10.1557/mrs.2012.203
Xia, F.N., Mueller, T., Lin, Y.M., Valdes-Garcia, A., Avouris, P.: Ultrafast graphene photodetector. Nat. Nanotechnol. 4(12), 839-843 (2009). doi:10.1038/Nnano.2009.292
Koybasi, O., Childres, I., Jovanovic, I., Chen, Y.P.: Graphene field effect transistor as a radiation and photo detector. Proc. SPIE 8373, 83730H (2012). doi:10.1117/12.919628
Xia, F.N., Mueller, T., Golizadeh-Mojarad, R., Freitag, M., Lin, Y.M., Tsang, J., Perebeinos, V., Avouris, P.: Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor. Nano Lett. 9(3), 1039-1044 (2009). doi:10.1021/Nl8033812
Mueller, T., Xia, F.N.A., Avouris, P.: Graphene photodetectors for high-speed optical communications. Nat. Photonics 4(5), 297-301 (2010). doi:10.1038/Nphoton.2010.40
Echtermeyer, T.J., Britnell, L., Jasnos, P.K., Lombardo, A., Gorbachev, R.V., Grigorenko, A.N., Geim, A.K., Ferrari, A.C., Novoselov, K.S.: Strong plasmonic enhancement of photovoltage in graphene. Nat. Commun. 2, 458 (2011). doi:10.1038/ncomms1464
Liu, Y., Cheng, R., Liao, L., Zhou, H.L., Bai, J.W., Liu, G., Liu, L.X., Huang, Y., Duan, X.F.: Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2, 579 (2011). doi:10.1038/Ncomms1589
Liu, M., Yin, X.B., Ulin-Avila, E., Geng, B.S., Zentgraf, T., Ju, L., Wang, F., Zhang, X.: A graphene-based broadband optical modulator. Nature 474(7349), 64-67 (2011). doi:10.1038/Nature10067
Kim, K., Choi, J.Y., Kim, T., Cho, S.H., Chung, H.J.: A role for graphene in silicon-based semiconductor devices. Nature 479(7373), 338-344 (2011). doi:10.1038/Nature10680
Sensale-Rodriguez, B., Fang, T., Yan, R.S., Kelly, M.M., Jena, D., Liu, L., Xing, H.L.: Unique prospects for graphene-based terahertz modulators. Appl. Phys. Lett. 99(11), 113104 (2011). doi:10.1063/1.3636435
Lu, Z.L., Zhao, W.S.: Nanoscale electro-optic modulators based on graphene-slot waveguides. J. Opt. Soc. Am. B 29(6), 1490-1496 (2012). doi:10.1364/JOSAB.29.001490
Bao, Q.L., Zhang, H., Wang, B., Ni, Z.H., Lim, C.H.Y.X., Wang, Y., Tang, D.Y., Loh, K.P.: Broadband graphene polarizer. Nat. Photonics 5(7), 411-415 (2011). doi:10.1038/Nphoton.2011.102.
Wang, X., Zhi, L.J., Mullen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323-327 (2008). doi:10.1021/nl072838r
Bae, S., Kim, H., Lee, Y., Xu, X.F., Park, J.S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.J., Kim, K.S., Ozyilmaz, B., Ahn, J.H., Hong, B.H., Iijima, S.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574-578 (2010). doi:10.1038/Nnano.2010.132.
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. P. Natl. Acad. Sci. USA 102(30), 10451-10453 (2005). doi:10.1073/pnas.0502848102
Li, X.S., Cai, W.W., An, J.H., Kim, S., Nah, J., Yang, D.X., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S.: Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 324(5932), 1312-1314 (2009). doi:10.1126/science.1171245
Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z.Y., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563-568 (2008). doi:10.1038/nnano.2008.215
Cai, J.M., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X.L., Mullen, K., Fasel, R.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466(7305), 470-473 (2010). doi:10.1038/Nature09211
Lin, Y.M., Dimitrakopoulos, C., Jenkins, K.A., Farmer, D.B., Chiu, H.Y., Grill, A., Avouris, P.: 100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science 327(5966), 662-662 (2010). doi:10.1126/science.1184289
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666-669 (2004). doi:10.1126/science.1102896
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197-200 (2005). doi:10.1038/Nature04233
Geim, A.K.: Nobel Lecture: Random walk to graphene. Rev. Mod. Phys. 83(3), 851-862 (2011). doi:10.1103/RevModPhys.83.851.
Huang, X., Qi, X.Y., Boey, F., Zhang, H.: Graphene-based composites. Chem. Soc. Rev. 41(2), 666-686 (2012). doi:10.1039/C1cs15078b
Qi, X.Y., Pu, K.Y., Li, H., Zhou, X.Z., Wu, S.X., Fan, Q.L., Liu, B., Boey, F., Huang, W., Zhang, H.: Amphiphilic Graphene Composites. Angew. Chem. Int. Edit. 49(49), 9426-9429 (2010). doi:10.1002/anie.201004497
Qi, X.Y., Pu, K.Y., Zhou, X.Z., Li, H., Liu, B., Boey, F., Huang, W., Zhang, H.: Conjugated-Polyelectrolyte-Functionalized Reduced Graphene Oxide with Excellent Solubility and Stability in Polar Solvents. Small 6(5), 663-669 (2010). doi:10.1002/smll.200902221
Yang, H.F., Zhang, Q.X., Shan, C.S., Li, F.H., Han, D.X., Niu, L.: Stable, Conductive Supramolecular Composite of Graphene Sheets with Conjugated Polyelectrolyte. Langmuir 26(9), 6708-6712 (2010). doi:10.1021/La100365z
Wu, S.X., Yin, Z.Y., He, Q.Y., Huang, X.A., Zhou, X.Z., Zhang, H.: Electrochemical Deposition of Semiconductor Oxides on Reduced Graphene Oxide-Based Flexible, Transparent, and Conductive Electrodes. J. Phys. Chem. C 114(27), 11816-11821 (2010). doi:10.1021/Jp103696u
Yin, Z.Y., Wu, S.X., Zhou, X.Z., Huang, X., Zhang, Q.C., Boey, F., Zhang, H.: Electrochemical Deposition of ZnO Nanorods on Transparent Reduced Graphene Oxide Electrodes for Hybrid Solar Cells. Small 6(2), 307-312 (2010). doi:10.1002/smll.200901968
Tung, V.C., Chen, L.M., Allen, M.J., Wassei, J.K., Nelson, K., Kaner, R.B., Yang, Y.: Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors. Nano Lett. 9(5), 1949-1955 (2009). doi:10.1021/Nl9001525
Lu, R.T., Christianson, C., Weintrub, B., Wu, J.Z.: High Photoresponse in Hybrid Graphene-Carbon Nanotube Infrared Detectors. ACS Appl. Mater. Inter. 5(22), 11703-11707 (2013). doi:10.1021/Am4033313
Shi, W.H., Zhu, J.X., Sim, D.H., Tay, Y.Y., Lu, Z.Y., Zhang, X.J., Sharma, Y., Srinivasan, M., Zhang, H., Hng, H.H., Yan, Q.Y.: Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. J. Mater. Chem. 21(10), 3422-3427 (2011). doi:10.1039/C0jm03175e
Li, F.H., Song, J.F., Yang, H.F., Gan, S.Y., Zhang, Q.X., Han, D.X., Ivaska, A., Niu, L.: One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology 20(45) (2009). doi:10.1088/0957-4484/20/45/455602
Cai, W.W., Zhu, Y.W., Li, X.S., Piner, R.D., Ruoff, R.S.: Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Appl. Phys. Lett. 95(12) (2009). doi:10.1063/1.3220807
Yin, Z.Y., Sun, S.Y., Salim, T., Wu, S.X., Huang, X.A., He, Q.Y., Lam, Y.M., Zhang, H.: Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes. ACS Nano 4(9), 5263-5268 (2010). doi:10.1021/Nn1015874
Li, X.M., Zhu, H.W., Wang, K.L., Cao, A.Y., Wei, J.Q., Li, C.Y., Jia, Y., Li, Z., Li, X., Wu, D.H.: Graphene-On-Silicon Schottky Junction Solar Cells. Adv. Mater. 22(25), 2743 (2010). doi:10.1002/adma.200904383
Shao, D.L., Sawyer, S., Hu, T., Yu, M.P., Lian, J.: Photoconductive Enhancement Effects of Graphene Quantum Dots on ZnO Nanoparticle Photodetectors. P. IEEE Les. Eastm. (2012)
Radoi, A., Dragoman, M., Cismaru, A., Konstantinidis, G., Dragoman, D.: Light-Harvesting Using Metallic Interdigitated Structures Modified with Au Sputtered Graphene. International Semiconductor Conference 2, 117-120 (2012)
Chang, H.X., Sun, Z.H., Ho, K.Y.F., Tao, X.M., Yan, F., Kwok, W.M., Zheng, Z.J.: A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure. Nanoscale 3(1), 258-264 (2011). doi:10.1039/C0nr00588f
Shao, D.L., Sun, X., Xie, M., Sun, H.T., Lu, F.Y., George, S.M., Lian, J., Sawyer, S.: ZnO quantum dots-graphene composite for efficient ultraviolet sensing. Mater. Lett. 112, 165-168 (2013). doi:10.1016/j.matlet.2013.09.031.
Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature 490(7419), 192-200 (2012). doi:10.1038/Nature11458
Reina, A., Son, H.B., Jiao, L.Y., Fan, B., Dresselhaus, M.S., Liu, Z.F., Kong, J.: Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates. J. Phys. Chem. C 112(46), 17741-17744 (2008). doi:10.1021/Jp807380s
Koppens, F.H.L., Chang, D.E., de Abajo, F.J.G.: Graphene Plasmonics: A Platform for Strong Light-Matter Interactions. Nano Lett. 11(8), 3370-3377 (2011). doi:10.1021/Nl201771h
Gusynin, V.P., Sharapov, S.G., Carbotte, J.P.: Sum rules for the optical and Hall conductivity in graphene. Phys. Rev. B 75(165407), 165407 (2007). doi:10.1103/Physrevb.75.165407
Mak, K.F., Sfeir, M.Y., Wu, Y., Lui, C.H., Misewich, J.A., Heinz, T.F.: Measurement of the Optical Conductivity of Graphene. Phys. Rev. Lett. 101(19), 196405 (2008). doi:10.1103/Physrevlett.101.196405
Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008). doi: 10.1126/science.1156965
Kuzmenko, A.B., van Heumen, E., Carbone, F., van der Marel, D.: Universal optical conductance of graphite. Phys. Rev. Lett. 100(11), 117401 (2008). doi:10.1103/Physrevlett.100.117401
Li, Z.Q., Henriksen, E.A., Jiang, Z., Hao, Z., Martin, M.C., Kim, P., Stormer, H.L., Basov, D.N.: Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys. 4(7), 532-535 (2008). doi:10.1038/Nphys989
Weiss, N.O., Zhou, H.L., Liao, L., Liu, Y., Jiang, S., Huang, Y., Duan, X.F.: Graphene: An Emerging Electronic Material. Adv. Mater. 24(43), 5782-5825 (2012). doi:10.1002/adma.201201482
Brody, H.: Graphene. Nature 483(7389), S29-S29 (2012). doi:10.1038/483S29a.
Reed, G.T., Mashanovich, G., Gardes, F.Y., Thomson, D.J.: Silicon optical modulators. Nat. Photonics 4(8), 518-526 (2010). doi:10.1038/nphoton.2010.179
Datta, S., Das, B.: Electronic Analog of the Electrooptic Modulator. Appl. Phys. Lett. 56(7), 665-667 (1990). doi:10.1063/1.102730
Gosciniak, J., Bozhevolnyi, S.I., Andersen, T.B., Volkov, V.S., Kjelstrup-Hansen, J., Markey, L., Dereux, A.: Thermo-optic control of dielectric-loaded plasmonic waveguide components. Opt. Express 18(2), 1207-1216 (2010). doi:10.1364/OE.18.001207
Gordon, E.I.: A Review of Acoustooptical Deflection and Modulation Devices. Appl. Optics 5(10), 1629 (1966). doi:10.1364/Ao.5.001629
Kuo, Y.H., Chen, H.W., Bowers, J.E.: High speed hybrid silicon evanescent electroabsorption modulator. Opt. Express 16(13), 9936-9941 (2008). doi:10.1364/Oe.16.009936.
Liu, M., Yin, X.B., Zhang, X.: Double-Layer Graphene Optical Modulator. Nano Lett. 12(3), 1482-1485 (2012). doi:10.1021/Nl204202k
Yan, K., Wu, D., Peng, H.L., Jin, L., Fu, Q., Bao, X.H., Liu, Z.F.: Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation. Nat. Commun. 3, 1280 (2012). doi:10.1038/Ncomms2286
Gosciniak, J., Tan, D.T.H.: Theoretical investigation of graphene-based photonic modulators. Sci. Rep. 3, 1897 (2013). doi:10.1038/Srep01897
Chenran, Y., Khan, S., Zhuo Ran, L., Simsek, E., Sorger, V.J.: λ-Size ITO and Graphene-Based Electro-Optic Modulators on SOI. Selected Topics in Quantum Electronics, IEEE Journal of 20(4) (2014). doi:10.1109/JSTQE.2014.2298451
Song, S.C., Chen, Q., Jin, L., Sun, F.H.: Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber. Nanoscale 5(20), 9615-9619 (2013). doi:10.1039/C3nr03505k
Vicarelli, L., Vitiello, M.S., Coquillat, D., Lombardo, A., Ferrari, A.C., Knap, W., Polini, M., Pellegrini, V., Tredicucci, A.: Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11(10), 865-871 (2012). doi:10.1038/Nmat3417
Chang, C.W., Wang, D.Y., Tan, W.C., Huang, I.S., Wang, I.S., Chen, C.C., Yang, Y.J., Chen, Y.F.: Enhanced performance of photodetector and photovoltaic based on carrier reflector and back surface field generated by doped graphene. Appl. Phys. Lett. 101(7), 073906 (2012). doi:10.1063/1.4746763
Prechtel, L., Song, L., Schuh, D., Ajayan, P., Wegscheider, W., Holleitner, A.W.: Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene. Nat. Commun. 3, 646 (2012). doi:10.1038/ncomms1656
Vora, H., Kumaravadivel, P., Nielsen, B., Du, X.: Bolometric response in graphene based superconducting tunnel junctions. Appl. Phys. Lett. 100(15) (2012). doi:10.1063/1.3703117
Fang, Z.Y., Liu, Z., Wang, Y.M., Ajayan, P.M., Nordlander, P., Halas, N.J.: Graphene-Antenna Sandwich Photodetector. Nano Lett. 12(7), 3808-3813 (2012). doi:10.1021/Nl301774e
Thongrattanasiri, S., Koppens, F.H.L., de Abajo, F.J.G.: Complete Optical Absorption in Periodically Patterned Graphene. Phys. Rev. Lett. 108(4), 047401 (2012). doi:10.1103/Physrevlett.108.047401
Xu, J.L., Li, X.L., He, J.L., Hao, X.P., Wu, Y.Z., Yang, Y., Yang, K.J.: Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser. Appl. Phys. Lett. 99(26), 261107 (2011). doi:10.1063/1.3672213
Wang, Z.F., Liu, F.: Manipulation of Electron Beam Propagation by Hetero-Dimensional Graphene Junctions. ACS Nano 4(4), 2459-2465 (2010). doi:10.1021/Nn1001722
Ju, L., Geng, B.S., Horng, J., Girit, C., Martin, M., Hao, Z., Bechtel, H.A., Liang, X.G., Zettl, A., Shen, Y.R., Wang, F.: Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6(10), 630-634 (2011). doi:10.1038/Nnano.2011.146
Lee, S.H., Choi, M., Kim, T.T., Lee, S., Liu, M., Yin, X., Choi, H.K., Lee, S.S., Choi, C.G., Choi, S.Y., Zhang, X., Min, B.: Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater. 11(11), 936-941 (2012). doi:10.1038/Nmat3433
Ramakrishnan, G., Chakkittakandy, R., Planken, P.C.M.: Terahertz generation from graphite. Opt. Express 17(18), 16092-16099 (2009). doi:10.1364/OE.17.016092
Mittendorff, M., Winnerl, S., Kamann, J., Eroms, J., Weiss, D., Schneider, H., Helm, M.: Ultrafast graphene-based broadband THz detector. Appl. Phys. Lett. 103(2), 021113 (2013). doi:10.1063/1.4813621
Ryzhii, V., Ryzhii, M.: Graphene bilayer field-effect phototransistor for terahertz and infrared detection. Phys. Rev. B 79(24) (2009). doi:10.1103/Physrevb.79.245311
Yang, H.Y., Son, D.I., Kim, T.W., Lee, J.M., Park, W.I.: Enhancement of the photocurrent in ultraviolet photodetectors fabricated utilizing hybrid polymer-ZnO quantum dot nanocomposites due to an embedded graphene layer. Org. Electron. 11(7), 1313-1317 (2010). doi:10.1016/j.orgel.2010.04.009
Singh, R.S., Nalla, V., Chen, W., Wee, A.T.S., Ji, W.: Laser Patterning of Epitaxial Graphene for Schottky Junction Photodetectors. ACS Nano 5(7), 5969-5975 (2011). doi:10.1021/Nn201757j
Fu, X.W., Liao, Z.M., Zhou, Y.B., Wu, H.C., Bie, Y.Q., Xu, J., Yu, D.P.: Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector. Appl. Phys. Lett. 100(22), 223114 (2012). doi:10.1063/1.4724208
Zhang, W.J., Chuu, C.P., Huang, J.K., Chen, C.H., Tsai, M.L., Chang, Y.H., Liang, C.T., Chen, Y.Z., Chueh, Y.L., He, J.H., Chou, M.Y., Li, L.J.: Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Sci. Rep. 4, 3826 (2014). doi:10.1038/Srep03826
Liu, C.H., Chang, Y.C., Norris, T.B., Zhong, Z.: Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9(4), 273-278 (2014). doi:10.1038/nnano.2014.31
Li, J., Niu, L., Zheng, Z., Yan, F.: Photosensitive Graphene Transistors. Adv. Mater. 26(31), 5239-5273 (2014). doi:10.1002/adma.201400349
Ryzhii, V., Ryzhii, M., Mitin, V., Otsuji, T.: Terahertz and infrared photodetection using p-i-n multiple-graphene-layer structures. J. Appl. Phys. 107(5), 054512 (2010). doi:10.1063/1.3327441
Ryzhii, V., Ryzhii, M., Ryabova, N., Mitin, V., Otsuji, T.: Terahertz and infrared detectors based on graphene structures. Infrared Phys. Techn. 54(3), 302-305 (2011). doi:10.1016/j.infrared.2010.12.034
Ryzhii, M., Otsuji, T., Mitin, V., Ryzhii, V.: Characteristics of p-i-n Terahertz and Infrared Photodiodes Based on Multiple Graphene Layer Structures. Jpn. J. Appl. Phys. 50(7), 070117 (2011). doi:10.1143/Jjap.50.070117
An, X.H., Liu, F.Z., Jung, Y.J., Kar, S.: Tunable Graphene-Silicon Heterojunctions for Ultrasensitive Photodetection. Nano Lett. 13(3), 909-916 (2013). doi:10.1021/Nl303682j
Amirmazlaghani, M., Raissi, F., Habibpour, O., Vukusic, J., Stake, J.: Graphene-Si Schottky IR Detector. IEEE J. Quantum Electron. 49(7), 589-594 (2013). doi:10.1109/Jqe.2013.2261472
Casalino, M., Coppola, G., Iodice, M., Rendina, I., Sirleto, L.: Near-Infrared All-Silicon Photodetectors. International J. Photoenergy 2012, 139278 (2012). doi:10.1155/2012/139278
Zeng, L.H., Wang, M.Z., Hu, H., Nie, B., Yu, Y.Q., Wu, C.Y., Wang, L., Hu, J.G., Xie, C., Liang, F.X., Luo, L.B.: Monolayer Graphene/Germanium Schottky Junction As High-Performance Self-Driven Infrared Light Photodetector. ACS Appl. Mater. Inter. 5(19), 9362-9366 (2013). doi:10.1021/Am4026505
Jin, W.F., Ye, Y., Gan, L., Yu, B., Wu, P.C., Dai, Y., Meng, H., Guo, X.F., Dai, L.: Self-powered high performance photodetectors based on CdSe nanobelt/graphene Schottky junctions. J. Mater. Chem. 22(7), 2863-2867 (2012). doi:10.1039/C2jm15913a
Gao, Z.W., Jin, W.F., Zhou, Y., Dai, Y., Yu, B., Liu, C., Xu, W.J., Li, Y.P., Peng, H.L., Liu, Z.F., Dai, L.: Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene Schottky junctions. Nanoscale 5(12), 5576-5581 (2013). doi:10.1039/C3nr34335a
Soci, C., Zhang, A., Bao, X.Y., Kim, H., Lo, Y., Wang, D.L.: Nanowire Photodetectors. J. Nanosci. Nanotechnol. 10(3), 1430-1449 (2010). doi:10.1166/jnn.2010.2157
Soci, C., Zhang, A., Xiang, B., Dayeh, S.A., Aplin, D.P.R., Park, J., Bao, X.Y., Lo, Y.H., Wang, D.: ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7(4), 1003-1009 (2007). doi:10.1021/Nl070111x
Bugallo, A.D., Tchernycheva, M., Jacopin, G., Rigutti, L., Julien, F.H., Chou, S.T., Lin, Y.T., Tseng, P.H., Tu, L.W.: Visible-blind photodetector based on p-i-n junction GaN nanowire ensembles. Nanotechnology 21(31), 315201 (2010). doi:10.1088/0957-4484/21/31/315201
Lee, H., Heo, K., Park, J., Park, Y., Noh, S., Kim, K.S., Lee, C., Hong, B.H., Jian, J., Hong, S.: Graphene-nanowire hybrid structures for high-performance photoconductive devices. J. Mater. Chem. 22(17), 8372-8376 (2012). doi:10.1039/C2jm16565a
Zhang, H., Babichev, A.V., Jacopin, G., Lavenus, P., Julien, F.H., Egorov, A.Y., Zhang, J., Pauporte, T., Tchernycheva, M.: Characterization and modeling of a ZnO nanowire ultraviolet photodetector with graphene transparent contact. J. Appl. Phys. 114(23), 234505 (2013). doi:10.1063/1.4854455
Nie, B.A., Hu, J.G., Luo, L.B., Xie, C., Zeng, L.H., Lv, P., Li, F.Z., Jie, J.S., Feng, M., Wu, C.Y., Yu, Y.Q., Yu, S.H.: Monolayer Graphene Film on ZnO Nanorod Array for High-Performance Schottky Junction Ultraviolet Photodetectors. Small 9(17), 2872-2879 (2013). doi:10.1002/smll.201203188
Babichev, A.V., Zhang, H., Lavenus, P., Julien, F.H., Egorov, A.Y., Lin, Y.T., Tu, L.W., Tchernycheva, M.: GaN nanowire ultraviolet photodetector with a graphene transparent contact. Appl. Phys. Lett. 103(20), 201103 (2013). doi:10.1063/1.4829756
Wang, M.Z., Liang, F.X., Nie, B., Zeng, L.H., Zheng, L.X., Lv, P., Yu, Y.Q., Xie, C., Li, Y.Y., Luo, L.B.: TiO2 Nanotube Array/Monolayer Graphene Film Schottky Junction Ultraviolet Light Photodetectors. Partical & Particle Systems Characterization 30(7), 630-636 (2013). doi:10.1002/ppsc.201300040
Xu, Q., Cheng, Q.J., Zhong, J.X., Cai, W.W., Zhang, Z.F., Wu, Z.Y., Zhang, F.Y.: A metal-semiconductor-metal detector based on ZnO nanowires grown on a graphene layer. Nanotechnology 25(5), 5 (2014). doi:10.1088/0957-4484/25/5/055501
Jin, Y., Wang, J., Sun, B., Blakesley, J.C., Greenham, N.C.: Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles. Nano Lett. 8(6), 1649-1653 (2008). doi:10.1021/nl0803702
Tsai, D.S., Lin, C.A., Lien, W.C., Chang, H.C., Wang, Y.L., He, J.H.: Ultra-High-Responsivity Broadband Detection of Si Metal-Semiconductor-Metal Schottky Photodetectors Improved by ZnO Nanorod Arrays. ACS Nano 5(10), 7748-7753 (2011). doi:10.1021/Nn203357e
Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., de Arquer, F.P.G., Gatti, F., Koppens, F.H.L.: Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7(6), 363-368 (2012). doi:10.1038/Nnano.2012.60
Manga, K.K., Wang, J.Z., Lin, M., Zhang, J., Nesladek, M., Nalla, V., Ji, W., Loh, K.P.: High-Performance Broadband Photodetector Using Solution-Processible PbSe-TiO2-Graphene Hybrids. Adv. Mater. 24(13), 1697-1702 (2012). doi:10.1002/adma.201104399
Manga, K.K., Wang, S., Jaiswal, M., Bao, Q.L., Loh, K.P.: High-Gain Graphene-Titanium Oxide Photoconductor Made from Inkjet Printable Ionic Solution. Adv. Mater. 22(46), 5265-5270 (2010). doi:10.1002/adma.201002939
Gur, I., Fromer, N.A., Geier, M.L., Alivisatos, A.P.: Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310(5747), 462-465 (2005). doi:10.1126/science.1117908
Shao, D.L., Yu, M.P., Sun, H.T., Hu, T., Lian, J., Sawyer, S.: High responsivity, fast ultraviolet photodetector fabricated from ZnO nanoparticle-graphene core-shell structures. Nanoscale 5(9), 3664-3667 (2013). doi:10.1039/C3nr00369h
Kishino, K., Unlu, M.S., Chyi, J.I., Reed, J., Arsenault, L., Morkoc, H.: Resonant Cavity-Enhanced (Rce) Photodetectors. IEEE J. Quantum Electron. 27(8), 2025-2034 (1991). doi:10.1109/3.83412
Unlu, M.S., Strite, S.: Resonant-Cavity Enhanced Photonic Devices. J. Appl. Phys. 78(2), 607-639 (1995)
Jervase, J.A., Zebda, Y.: Characteristic analysis of resonant-cavity-enhanced (RCE) photodetectors. IEEE J. Quantum Electron. 34(7), 1129-1134 (1998). doi:10.1109/3.687854
Bugajski, M., Muszalski, J., Mroziewicz, B., Reginski, K., Ochalski, T.J.: Resonant cavity enhanced photonic devices. Opt. Appl. 31(2), 273-288 (2001).
Bugajski, M., Muszalski, J., Ochalski, T., Katcki, J., Mroziewicz, B.: Resonant cavity enhanced photonic devices. Acta. Phys. Pol. A 101(1), 105-118 (2002).
Furchi, M., Urich, A., Pospischil, A., Lilley, G., Unterrainer, K., Detz, H., Klang, P., Andrews, A.M., Schrenk, W., Strasser, G., Mueller, T.: Microcavity-Integrated Graphene Photodetector. Nano Lett. 12(6), 2773-2777 (2012). doi:10.1021/Nl204512x
Engel, M., Steiner, M., Lombardo, A., Ferrari, A.C., Löhneysen, H.v., Avouris, P., Krupke, R.: Light–matter interaction in a microcavity-controlled graphene transistor. Nat. Commun. 3, 906 (2012). doi:10.1038/ncomms1911
Gan, X.T., Mak, K.F., Gao, Y.D., You, Y.M., Hatami, F., Hone, J., Heinz, T.F., Englund, D.: Strong Enhancement of Light-Matter Interaction in Graphene Coupled to a Photonic Crystal Nanocavity. Nano Lett. 12(11), 5626-5631 (2012). doi:10.1021/Nl302746n
Shiue, R.J., Gan, X.T., Gao, Y.D., Li, L.Z., Yao, X.W., Szep, A., Walker, D., Hone, J., Englund, D.: Enhanced photodetection in graphene-integrated photonic crystal cavity. Appl. Phys. Lett. 103(24) (2013). doi:10.1063/1.4839235
Gan, X.T., Shiue, R.J., Gao, Y.D., Assefa, S., Hone, J., Englund, D.: Controlled Light-Matter Interaction in Graphene Electrooptic Devices Using Nanophotonic Cavities and Waveguides. IEEE J. Sel. Top. Quant. 20(1), 600311 (2014). doi:10.1109/Jstqe.2013.2273412
Piper, J.R., Fan, S.: Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance. ACS Photonics 1(4), 347-353 (2014). doi:10.1021/ph400090p
Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824-830 (2003). doi:10.1038/Nature01937
Liedberg, B., Nylander, C., Lundstrom, I.: Surface-Plasmon Resonance for Gas-Detection and Biosensing. Sensor Actuator 4(2), 299-304 (1983). doi:10.1016/0250-6874(83)85036-7
Nikolajsen, T., Leosson, K., Bozhevolnyi, S.I.: Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl. Phys. Lett. 85(24), 5833-5835 (2004). doi:10.1063/1.1835997
Shi, S.F., Xu, X.D., Ralph, D.C., McEuen, P.L.: Plasmon Resonance in Individual Nanogap Electrodes Studied Using Graphene Nanoconstrictions as Photodetectors. Nano Lett. 11(4), 1814-1818 (2011). doi:10.1021/Nl200522t
Zhang, Y.Z., Liu, T., Meng, B., Li, X.H., Liang, G.Z., Hu, X.N., Wang, Q.J.: Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 4, 1811 (2013). doi:10.1038/Ncomms2830
Acknowledgments
This work is supported by the grants from the National Natural Science Foundation of China (No. 11274344), the Hundred Talents Program of Chinese Academy of Sciences, the Scientific Research Foundation for the Returned Overseas Chinese Scholars and Suzhou Science and Technology Development Program Foundation (No. ZXG201425).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Song, S., Wen, L., Chen, Q. (2015). Graphene Composites Based Photodetectors. In: Sadasivuni, K., Ponnamma, D., Kim, J., Thomas, S. (eds) Graphene-Based Polymer Nanocomposites in Electronics. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13875-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-13875-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13874-9
Online ISBN: 978-3-319-13875-6
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)