Skip to main content

Graphene Composites Based Photodetectors

  • Chapter
  • First Online:
Graphene-Based Polymer Nanocomposites in Electronics

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Graphene is an amazing material with unique electrical and optical properties that have never been observed in conventional materials. Graphene can absorb light from ultraviolet to infrared and transit carriers at a speed of 1/300 of light, which make graphene an excellent candidate for optoelectronic applications. Graphene composites consisting of graphene and other materials combine the high carrier mobility property of graphene and the excellent light absorption properties of other semiconductors , which are ideal for development of next-generation optoelectronic devices, especially photodetectors . In this chapter, we review the recent progress of graphene composite photodetectors with significant performance improvement compared to the original graphene photodetectors and discuss its future developments. We consider that graphene composite photodetectors would play an important role in future optical interconnect and imaging systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CVD:

Chemical vapor deposition

CNT:

Carbon nanotube

OLED:

Organic light emitting devices

NW:

Nanowire

QDs:

Quantum dots

FET:

Field-effect transistor

MSM:

Metal-semiconductor-metal

IR:

Infrared

UV:

Ultraviolet

THz:

Terahertz

Reference

  1. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183-191 (2007). doi:10.1038/Nmat1849

  2. Morozov, S.V., Novoselov, K.S., Katsnelson, M.I., Schedin, F., Elias, D.C., Jaszczak, J.A., Geim, A.K.: Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100(1), 016602 (2008). doi:10.1103/Physrevlett.100.016602

  3. Mayorov, A.S., Gorbachev, R.V., Morozov, S.V., Britnell, L., Jalil, R., Ponomarenko, L.A., Blake, P., Novoselov, K.S., Watanabe, K., Taniguchi, T., Geim, A.K.: Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature. Nano Lett. 11(6), 2396-2399 (2011). doi:10.1021/Nl200758b

  4. Lee, C., Wei, X.D., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385-388 (2008). doi::10.1126/science.1157996

  5. Balandin, A.A., Ghosh, S., Bao, W.Z., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902-907 (2008). doi:10.1021/Nl0731872

  6. Balandin, A.A., Ghosh, S., Nika, D.L., Pokatilov, E.P.: Thermal Conduction in Suspended Graphene Layers. Fuller. Nanotub. Car. N. 18(4-6), 474-486 (2010). doi:10.1080/1536383x.2010.487785

  7. Choi, H., Borondics, F., Siegel, D.A., Zhou, S.Y., Martin, M.C., Lanzara, A., Kaindl, R.A.: Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene. Appl. Phys. Lett. 94, 172102 (2009). doi:10.1063/1.3122348

  8. Zhao, W.S., Shi, K.F., Lu, Z.L.: Greatly enhanced ultrabroadband light absorption by monolayer graphene. Opt. Lett. 38(21), 4342-4345 (2013). doi:10.1364/Ol.38.004342

  9. Liao, A.D., Wu, J.Z., Wang, X.R., Tahy, K., Jena, D., Dai, H.J., Pop, E.: Thermally Limited Current Carrying Ability of Graphene Nanoribbons. Phys. Rev. Lett. 106(25), 256801 (2011). doi:10.1103/Physrevlett.106.256801

  10. Bae, M.H., Islam, S., Dorgan, V.E., Pop, E.: Scaling of High-Field Transport and Localized Heating in Graphene Transistors. ACS Nano 5(10), 7936-7944 (2011). doi:10.1021/nn202239y

  11. Pop, E., Varshney, V., Roy, A.K.: Thermal properties of graphene: Fundamentals and applications. Mrs. Bull. 37(12), 1273-1281 (2012). doi:10.1557/mrs.2012.203

  12. Xia, F.N., Mueller, T., Lin, Y.M., Valdes-Garcia, A., Avouris, P.: Ultrafast graphene photodetector. Nat. Nanotechnol. 4(12), 839-843 (2009). doi:10.1038/Nnano.2009.292

  13. Koybasi, O., Childres, I., Jovanovic, I., Chen, Y.P.: Graphene field effect transistor as a radiation and photo detector. Proc. SPIE 8373, 83730H (2012). doi:10.1117/12.919628

  14. Xia, F.N., Mueller, T., Golizadeh-Mojarad, R., Freitag, M., Lin, Y.M., Tsang, J., Perebeinos, V., Avouris, P.: Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor. Nano Lett. 9(3), 1039-1044 (2009). doi:10.1021/Nl8033812

  15. Mueller, T., Xia, F.N.A., Avouris, P.: Graphene photodetectors for high-speed optical communications. Nat. Photonics 4(5), 297-301 (2010). doi:10.1038/Nphoton.2010.40

  16. Echtermeyer, T.J., Britnell, L., Jasnos, P.K., Lombardo, A., Gorbachev, R.V., Grigorenko, A.N., Geim, A.K., Ferrari, A.C., Novoselov, K.S.: Strong plasmonic enhancement of photovoltage in graphene. Nat. Commun. 2, 458 (2011). doi:10.1038/ncomms1464

  17. Liu, Y., Cheng, R., Liao, L., Zhou, H.L., Bai, J.W., Liu, G., Liu, L.X., Huang, Y., Duan, X.F.: Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2, 579 (2011). doi:10.1038/Ncomms1589

  18. Liu, M., Yin, X.B., Ulin-Avila, E., Geng, B.S., Zentgraf, T., Ju, L., Wang, F., Zhang, X.: A graphene-based broadband optical modulator. Nature 474(7349), 64-67 (2011). doi:10.1038/Nature10067

  19. Kim, K., Choi, J.Y., Kim, T., Cho, S.H., Chung, H.J.: A role for graphene in silicon-based semiconductor devices. Nature 479(7373), 338-344 (2011). doi:10.1038/Nature10680

  20. Sensale-Rodriguez, B., Fang, T., Yan, R.S., Kelly, M.M., Jena, D., Liu, L., Xing, H.L.: Unique prospects for graphene-based terahertz modulators. Appl. Phys. Lett. 99(11), 113104 (2011). doi:10.1063/1.3636435

  21. Lu, Z.L., Zhao, W.S.: Nanoscale electro-optic modulators based on graphene-slot waveguides. J. Opt. Soc. Am. B 29(6), 1490-1496 (2012). doi:10.1364/JOSAB.29.001490

  22. Bao, Q.L., Zhang, H., Wang, B., Ni, Z.H., Lim, C.H.Y.X., Wang, Y., Tang, D.Y., Loh, K.P.: Broadband graphene polarizer. Nat. Photonics 5(7), 411-415 (2011). doi:10.1038/Nphoton.2011.102.

  23. Wang, X., Zhi, L.J., Mullen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323-327 (2008). doi:10.1021/nl072838r

  24. Bae, S., Kim, H., Lee, Y., Xu, X.F., Park, J.S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.J., Kim, K.S., Ozyilmaz, B., Ahn, J.H., Hong, B.H., Iijima, S.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574-578 (2010). doi:10.1038/Nnano.2010.132.

  25. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. P. Natl. Acad. Sci. USA 102(30), 10451-10453 (2005). doi:10.1073/pnas.0502848102

  26. Li, X.S., Cai, W.W., An, J.H., Kim, S., Nah, J., Yang, D.X., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S.: Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 324(5932), 1312-1314 (2009). doi:10.1126/science.1171245

  27. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z.Y., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563-568 (2008). doi:10.1038/nnano.2008.215

  28. Cai, J.M., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X.L., Mullen, K., Fasel, R.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466(7305), 470-473 (2010). doi:10.1038/Nature09211

  29. Lin, Y.M., Dimitrakopoulos, C., Jenkins, K.A., Farmer, D.B., Chiu, H.Y., Grill, A., Avouris, P.: 100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science 327(5966), 662-662 (2010). doi:10.1126/science.1184289

  30. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666-669 (2004). doi:10.1126/science.1102896

  31. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197-200 (2005). doi:10.1038/Nature04233

  32. Geim, A.K.: Nobel Lecture: Random walk to graphene. Rev. Mod. Phys. 83(3), 851-862 (2011). doi:10.1103/RevModPhys.83.851.

  33. Huang, X., Qi, X.Y., Boey, F., Zhang, H.: Graphene-based composites. Chem. Soc. Rev. 41(2), 666-686 (2012). doi:10.1039/C1cs15078b

  34. Qi, X.Y., Pu, K.Y., Li, H., Zhou, X.Z., Wu, S.X., Fan, Q.L., Liu, B., Boey, F., Huang, W., Zhang, H.: Amphiphilic Graphene Composites. Angew. Chem. Int. Edit. 49(49), 9426-9429 (2010). doi:10.1002/anie.201004497

  35. Qi, X.Y., Pu, K.Y., Zhou, X.Z., Li, H., Liu, B., Boey, F., Huang, W., Zhang, H.: Conjugated-Polyelectrolyte-Functionalized Reduced Graphene Oxide with Excellent Solubility and Stability in Polar Solvents. Small 6(5), 663-669 (2010). doi:10.1002/smll.200902221

  36. Yang, H.F., Zhang, Q.X., Shan, C.S., Li, F.H., Han, D.X., Niu, L.: Stable, Conductive Supramolecular Composite of Graphene Sheets with Conjugated Polyelectrolyte. Langmuir 26(9), 6708-6712 (2010). doi:10.1021/La100365z

  37. Wu, S.X., Yin, Z.Y., He, Q.Y., Huang, X.A., Zhou, X.Z., Zhang, H.: Electrochemical Deposition of Semiconductor Oxides on Reduced Graphene Oxide-Based Flexible, Transparent, and Conductive Electrodes. J. Phys. Chem. C 114(27), 11816-11821 (2010). doi:10.1021/Jp103696u

  38. Yin, Z.Y., Wu, S.X., Zhou, X.Z., Huang, X., Zhang, Q.C., Boey, F., Zhang, H.: Electrochemical Deposition of ZnO Nanorods on Transparent Reduced Graphene Oxide Electrodes for Hybrid Solar Cells. Small 6(2), 307-312 (2010). doi:10.1002/smll.200901968

  39. Tung, V.C., Chen, L.M., Allen, M.J., Wassei, J.K., Nelson, K., Kaner, R.B., Yang, Y.: Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors. Nano Lett. 9(5), 1949-1955 (2009). doi:10.1021/Nl9001525

  40. Lu, R.T., Christianson, C., Weintrub, B., Wu, J.Z.: High Photoresponse in Hybrid Graphene-Carbon Nanotube Infrared Detectors. ACS Appl. Mater. Inter. 5(22), 11703-11707 (2013). doi:10.1021/Am4033313

  41. Shi, W.H., Zhu, J.X., Sim, D.H., Tay, Y.Y., Lu, Z.Y., Zhang, X.J., Sharma, Y., Srinivasan, M., Zhang, H., Hng, H.H., Yan, Q.Y.: Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. J. Mater. Chem. 21(10), 3422-3427 (2011). doi:10.1039/C0jm03175e

  42. Li, F.H., Song, J.F., Yang, H.F., Gan, S.Y., Zhang, Q.X., Han, D.X., Ivaska, A., Niu, L.: One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology 20(45) (2009). doi:10.1088/0957-4484/20/45/455602

  43. Cai, W.W., Zhu, Y.W., Li, X.S., Piner, R.D., Ruoff, R.S.: Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Appl. Phys. Lett. 95(12) (2009). doi:10.1063/1.3220807

  44. Yin, Z.Y., Sun, S.Y., Salim, T., Wu, S.X., Huang, X.A., He, Q.Y., Lam, Y.M., Zhang, H.: Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes. ACS Nano 4(9), 5263-5268 (2010). doi:10.1021/Nn1015874

  45. Li, X.M., Zhu, H.W., Wang, K.L., Cao, A.Y., Wei, J.Q., Li, C.Y., Jia, Y., Li, Z., Li, X., Wu, D.H.: Graphene-On-Silicon Schottky Junction Solar Cells. Adv. Mater. 22(25), 2743 (2010). doi:10.1002/adma.200904383

  46. Shao, D.L., Sawyer, S., Hu, T., Yu, M.P., Lian, J.: Photoconductive Enhancement Effects of Graphene Quantum Dots on ZnO Nanoparticle Photodetectors. P. IEEE Les. Eastm. (2012)

    Google Scholar 

  47. Radoi, A., Dragoman, M., Cismaru, A., Konstantinidis, G., Dragoman, D.: Light-Harvesting Using Metallic Interdigitated Structures Modified with Au Sputtered Graphene. International Semiconductor Conference 2, 117-120 (2012)

    Google Scholar 

  48. Chang, H.X., Sun, Z.H., Ho, K.Y.F., Tao, X.M., Yan, F., Kwok, W.M., Zheng, Z.J.: A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure. Nanoscale 3(1), 258-264 (2011). doi:10.1039/C0nr00588f

  49. Shao, D.L., Sun, X., Xie, M., Sun, H.T., Lu, F.Y., George, S.M., Lian, J., Sawyer, S.: ZnO quantum dots-graphene composite for efficient ultraviolet sensing. Mater. Lett. 112, 165-168 (2013). doi:10.1016/j.matlet.2013.09.031.

  50. Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature 490(7419), 192-200 (2012). doi:10.1038/Nature11458

  51. Reina, A., Son, H.B., Jiao, L.Y., Fan, B., Dresselhaus, M.S., Liu, Z.F., Kong, J.: Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates. J. Phys. Chem. C 112(46), 17741-17744 (2008). doi:10.1021/Jp807380s

  52. Koppens, F.H.L., Chang, D.E., de Abajo, F.J.G.: Graphene Plasmonics: A Platform for Strong Light-Matter Interactions. Nano Lett. 11(8), 3370-3377 (2011). doi:10.1021/Nl201771h

  53. Gusynin, V.P., Sharapov, S.G., Carbotte, J.P.: Sum rules for the optical and Hall conductivity in graphene. Phys. Rev. B 75(165407), 165407 (2007). doi:10.1103/Physrevb.75.165407

  54. Mak, K.F., Sfeir, M.Y., Wu, Y., Lui, C.H., Misewich, J.A., Heinz, T.F.: Measurement of the Optical Conductivity of Graphene. Phys. Rev. Lett. 101(19), 196405 (2008). doi:10.1103/Physrevlett.101.196405

  55. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008). doi: 10.1126/science.1156965

  56. Kuzmenko, A.B., van Heumen, E., Carbone, F., van der Marel, D.: Universal optical conductance of graphite. Phys. Rev. Lett. 100(11), 117401 (2008). doi:10.1103/Physrevlett.100.117401

  57. Li, Z.Q., Henriksen, E.A., Jiang, Z., Hao, Z., Martin, M.C., Kim, P., Stormer, H.L., Basov, D.N.: Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys. 4(7), 532-535 (2008). doi:10.1038/Nphys989

  58. Weiss, N.O., Zhou, H.L., Liao, L., Liu, Y., Jiang, S., Huang, Y., Duan, X.F.: Graphene: An Emerging Electronic Material. Adv. Mater. 24(43), 5782-5825 (2012). doi:10.1002/adma.201201482

  59. Brody, H.: Graphene. Nature 483(7389), S29-S29 (2012). doi:10.1038/483S29a.

  60. Reed, G.T., Mashanovich, G., Gardes, F.Y., Thomson, D.J.: Silicon optical modulators. Nat. Photonics 4(8), 518-526 (2010). doi:10.1038/nphoton.2010.179

  61. Datta, S., Das, B.: Electronic Analog of the Electrooptic Modulator. Appl. Phys. Lett. 56(7), 665-667 (1990). doi:10.1063/1.102730

  62. Gosciniak, J., Bozhevolnyi, S.I., Andersen, T.B., Volkov, V.S., Kjelstrup-Hansen, J., Markey, L., Dereux, A.: Thermo-optic control of dielectric-loaded plasmonic waveguide components. Opt. Express 18(2), 1207-1216 (2010). doi:10.1364/OE.18.001207

  63. Gordon, E.I.: A Review of Acoustooptical Deflection and Modulation Devices. Appl. Optics 5(10), 1629 (1966). doi:10.1364/Ao.5.001629

  64. Kuo, Y.H., Chen, H.W., Bowers, J.E.: High speed hybrid silicon evanescent electroabsorption modulator. Opt. Express 16(13), 9936-9941 (2008). doi:10.1364/Oe.16.009936.

  65. Liu, M., Yin, X.B., Zhang, X.: Double-Layer Graphene Optical Modulator. Nano Lett. 12(3), 1482-1485 (2012). doi:10.1021/Nl204202k

  66. Yan, K., Wu, D., Peng, H.L., Jin, L., Fu, Q., Bao, X.H., Liu, Z.F.: Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation. Nat. Commun. 3, 1280 (2012). doi:10.1038/Ncomms2286

  67. Gosciniak, J., Tan, D.T.H.: Theoretical investigation of graphene-based photonic modulators. Sci. Rep. 3, 1897 (2013). doi:10.1038/Srep01897

  68. Chenran, Y., Khan, S., Zhuo Ran, L., Simsek, E., Sorger, V.J.: λ-Size ITO and Graphene-Based Electro-Optic Modulators on SOI. Selected Topics in Quantum Electronics, IEEE Journal of 20(4) (2014). doi:10.1109/JSTQE.2014.2298451

  69. Song, S.C., Chen, Q., Jin, L., Sun, F.H.: Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber. Nanoscale 5(20), 9615-9619 (2013). doi:10.1039/C3nr03505k

  70. Vicarelli, L., Vitiello, M.S., Coquillat, D., Lombardo, A., Ferrari, A.C., Knap, W., Polini, M., Pellegrini, V., Tredicucci, A.: Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11(10), 865-871 (2012). doi:10.1038/Nmat3417

  71. Chang, C.W., Wang, D.Y., Tan, W.C., Huang, I.S., Wang, I.S., Chen, C.C., Yang, Y.J., Chen, Y.F.: Enhanced performance of photodetector and photovoltaic based on carrier reflector and back surface field generated by doped graphene. Appl. Phys. Lett. 101(7), 073906 (2012). doi:10.1063/1.4746763

  72. Prechtel, L., Song, L., Schuh, D., Ajayan, P., Wegscheider, W., Holleitner, A.W.: Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene. Nat. Commun. 3, 646 (2012). doi:10.1038/ncomms1656

  73. Vora, H., Kumaravadivel, P., Nielsen, B., Du, X.: Bolometric response in graphene based superconducting tunnel junctions. Appl. Phys. Lett. 100(15) (2012). doi:10.1063/1.3703117

  74. Fang, Z.Y., Liu, Z., Wang, Y.M., Ajayan, P.M., Nordlander, P., Halas, N.J.: Graphene-Antenna Sandwich Photodetector. Nano Lett. 12(7), 3808-3813 (2012). doi:10.1021/Nl301774e

  75. Thongrattanasiri, S., Koppens, F.H.L., de Abajo, F.J.G.: Complete Optical Absorption in Periodically Patterned Graphene. Phys. Rev. Lett. 108(4), 047401 (2012). doi:10.1103/Physrevlett.108.047401

  76. Xu, J.L., Li, X.L., He, J.L., Hao, X.P., Wu, Y.Z., Yang, Y., Yang, K.J.: Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser. Appl. Phys. Lett. 99(26), 261107 (2011). doi:10.1063/1.3672213

  77. Wang, Z.F., Liu, F.: Manipulation of Electron Beam Propagation by Hetero-Dimensional Graphene Junctions. ACS Nano 4(4), 2459-2465 (2010). doi:10.1021/Nn1001722

  78. Ju, L., Geng, B.S., Horng, J., Girit, C., Martin, M., Hao, Z., Bechtel, H.A., Liang, X.G., Zettl, A., Shen, Y.R., Wang, F.: Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6(10), 630-634 (2011). doi:10.1038/Nnano.2011.146

  79. Lee, S.H., Choi, M., Kim, T.T., Lee, S., Liu, M., Yin, X., Choi, H.K., Lee, S.S., Choi, C.G., Choi, S.Y., Zhang, X., Min, B.: Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater. 11(11), 936-941 (2012). doi:10.1038/Nmat3433

  80. Ramakrishnan, G., Chakkittakandy, R., Planken, P.C.M.: Terahertz generation from graphite. Opt. Express 17(18), 16092-16099 (2009). doi:10.1364/OE.17.016092

  81. Mittendorff, M., Winnerl, S., Kamann, J., Eroms, J., Weiss, D., Schneider, H., Helm, M.: Ultrafast graphene-based broadband THz detector. Appl. Phys. Lett. 103(2), 021113 (2013). doi:10.1063/1.4813621

  82. Ryzhii, V., Ryzhii, M.: Graphene bilayer field-effect phototransistor for terahertz and infrared detection. Phys. Rev. B 79(24) (2009). doi:10.1103/Physrevb.79.245311

  83. Yang, H.Y., Son, D.I., Kim, T.W., Lee, J.M., Park, W.I.: Enhancement of the photocurrent in ultraviolet photodetectors fabricated utilizing hybrid polymer-ZnO quantum dot nanocomposites due to an embedded graphene layer. Org. Electron. 11(7), 1313-1317 (2010). doi:10.1016/j.orgel.2010.04.009

  84. Singh, R.S., Nalla, V., Chen, W., Wee, A.T.S., Ji, W.: Laser Patterning of Epitaxial Graphene for Schottky Junction Photodetectors. ACS Nano 5(7), 5969-5975 (2011). doi:10.1021/Nn201757j

  85. Fu, X.W., Liao, Z.M., Zhou, Y.B., Wu, H.C., Bie, Y.Q., Xu, J., Yu, D.P.: Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector. Appl. Phys. Lett. 100(22), 223114 (2012). doi:10.1063/1.4724208

  86. Zhang, W.J., Chuu, C.P., Huang, J.K., Chen, C.H., Tsai, M.L., Chang, Y.H., Liang, C.T., Chen, Y.Z., Chueh, Y.L., He, J.H., Chou, M.Y., Li, L.J.: Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Sci. Rep. 4, 3826 (2014). doi:10.1038/Srep03826

  87. Liu, C.H., Chang, Y.C., Norris, T.B., Zhong, Z.: Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9(4), 273-278 (2014). doi:10.1038/nnano.2014.31

  88. Li, J., Niu, L., Zheng, Z., Yan, F.: Photosensitive Graphene Transistors. Adv. Mater. 26(31), 5239-5273 (2014). doi:10.1002/adma.201400349

  89. Ryzhii, V., Ryzhii, M., Mitin, V., Otsuji, T.: Terahertz and infrared photodetection using p-i-n multiple-graphene-layer structures. J. Appl. Phys. 107(5), 054512 (2010). doi:10.1063/1.3327441

  90. Ryzhii, V., Ryzhii, M., Ryabova, N., Mitin, V., Otsuji, T.: Terahertz and infrared detectors based on graphene structures. Infrared Phys. Techn. 54(3), 302-305 (2011). doi:10.1016/j.infrared.2010.12.034

  91. Ryzhii, M., Otsuji, T., Mitin, V., Ryzhii, V.: Characteristics of p-i-n Terahertz and Infrared Photodiodes Based on Multiple Graphene Layer Structures. Jpn. J. Appl. Phys. 50(7), 070117 (2011). doi:10.1143/Jjap.50.070117

  92. An, X.H., Liu, F.Z., Jung, Y.J., Kar, S.: Tunable Graphene-Silicon Heterojunctions for Ultrasensitive Photodetection. Nano Lett. 13(3), 909-916 (2013). doi:10.1021/Nl303682j

  93. Amirmazlaghani, M., Raissi, F., Habibpour, O., Vukusic, J., Stake, J.: Graphene-Si Schottky IR Detector. IEEE J. Quantum Electron. 49(7), 589-594 (2013). doi:10.1109/Jqe.2013.2261472

  94. Casalino, M., Coppola, G., Iodice, M., Rendina, I., Sirleto, L.: Near-Infrared All-Silicon Photodetectors. International J. Photoenergy 2012, 139278 (2012). doi:10.1155/2012/139278

  95. Zeng, L.H., Wang, M.Z., Hu, H., Nie, B., Yu, Y.Q., Wu, C.Y., Wang, L., Hu, J.G., Xie, C., Liang, F.X., Luo, L.B.: Monolayer Graphene/Germanium Schottky Junction As High-Performance Self-Driven Infrared Light Photodetector. ACS Appl. Mater. Inter. 5(19), 9362-9366 (2013). doi:10.1021/Am4026505

  96. Jin, W.F., Ye, Y., Gan, L., Yu, B., Wu, P.C., Dai, Y., Meng, H., Guo, X.F., Dai, L.: Self-powered high performance photodetectors based on CdSe nanobelt/graphene Schottky junctions. J. Mater. Chem. 22(7), 2863-2867 (2012). doi:10.1039/C2jm15913a

  97. Gao, Z.W., Jin, W.F., Zhou, Y., Dai, Y., Yu, B., Liu, C., Xu, W.J., Li, Y.P., Peng, H.L., Liu, Z.F., Dai, L.: Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene Schottky junctions. Nanoscale 5(12), 5576-5581 (2013). doi:10.1039/C3nr34335a

  98. Soci, C., Zhang, A., Bao, X.Y., Kim, H., Lo, Y., Wang, D.L.: Nanowire Photodetectors. J. Nanosci. Nanotechnol. 10(3), 1430-1449 (2010). doi:10.1166/jnn.2010.2157

  99. Soci, C., Zhang, A., Xiang, B., Dayeh, S.A., Aplin, D.P.R., Park, J., Bao, X.Y., Lo, Y.H., Wang, D.: ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7(4), 1003-1009 (2007). doi:10.1021/Nl070111x

  100. Bugallo, A.D., Tchernycheva, M., Jacopin, G., Rigutti, L., Julien, F.H., Chou, S.T., Lin, Y.T., Tseng, P.H., Tu, L.W.: Visible-blind photodetector based on p-i-n junction GaN nanowire ensembles. Nanotechnology 21(31), 315201 (2010). doi:10.1088/0957-4484/21/31/315201

  101. Lee, H., Heo, K., Park, J., Park, Y., Noh, S., Kim, K.S., Lee, C., Hong, B.H., Jian, J., Hong, S.: Graphene-nanowire hybrid structures for high-performance photoconductive devices. J. Mater. Chem. 22(17), 8372-8376 (2012). doi:10.1039/C2jm16565a

  102. Zhang, H., Babichev, A.V., Jacopin, G., Lavenus, P., Julien, F.H., Egorov, A.Y., Zhang, J., Pauporte, T., Tchernycheva, M.: Characterization and modeling of a ZnO nanowire ultraviolet photodetector with graphene transparent contact. J. Appl. Phys. 114(23), 234505 (2013). doi:10.1063/1.4854455

  103. Nie, B.A., Hu, J.G., Luo, L.B., Xie, C., Zeng, L.H., Lv, P., Li, F.Z., Jie, J.S., Feng, M., Wu, C.Y., Yu, Y.Q., Yu, S.H.: Monolayer Graphene Film on ZnO Nanorod Array for High-Performance Schottky Junction Ultraviolet Photodetectors. Small 9(17), 2872-2879 (2013). doi:10.1002/smll.201203188

  104. Babichev, A.V., Zhang, H., Lavenus, P., Julien, F.H., Egorov, A.Y., Lin, Y.T., Tu, L.W., Tchernycheva, M.: GaN nanowire ultraviolet photodetector with a graphene transparent contact. Appl. Phys. Lett. 103(20), 201103 (2013). doi:10.1063/1.4829756

  105. Wang, M.Z., Liang, F.X., Nie, B., Zeng, L.H., Zheng, L.X., Lv, P., Yu, Y.Q., Xie, C., Li, Y.Y., Luo, L.B.: TiO2 Nanotube Array/Monolayer Graphene Film Schottky Junction Ultraviolet Light Photodetectors. Partical & Particle Systems Characterization 30(7), 630-636 (2013). doi:10.1002/ppsc.201300040

  106. Xu, Q., Cheng, Q.J., Zhong, J.X., Cai, W.W., Zhang, Z.F., Wu, Z.Y., Zhang, F.Y.: A metal-semiconductor-metal detector based on ZnO nanowires grown on a graphene layer. Nanotechnology 25(5), 5 (2014). doi:10.1088/0957-4484/25/5/055501

  107. Jin, Y., Wang, J., Sun, B., Blakesley, J.C., Greenham, N.C.: Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles. Nano Lett. 8(6), 1649-1653 (2008). doi:10.1021/nl0803702

  108. Tsai, D.S., Lin, C.A., Lien, W.C., Chang, H.C., Wang, Y.L., He, J.H.: Ultra-High-Responsivity Broadband Detection of Si Metal-Semiconductor-Metal Schottky Photodetectors Improved by ZnO Nanorod Arrays. ACS Nano 5(10), 7748-7753 (2011). doi:10.1021/Nn203357e

  109. Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., de Arquer, F.P.G., Gatti, F., Koppens, F.H.L.: Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7(6), 363-368 (2012). doi:10.1038/Nnano.2012.60

  110. Manga, K.K., Wang, J.Z., Lin, M., Zhang, J., Nesladek, M., Nalla, V., Ji, W., Loh, K.P.: High-Performance Broadband Photodetector Using Solution-Processible PbSe-TiO2-Graphene Hybrids. Adv. Mater. 24(13), 1697-1702 (2012). doi:10.1002/adma.201104399

  111. Manga, K.K., Wang, S., Jaiswal, M., Bao, Q.L., Loh, K.P.: High-Gain Graphene-Titanium Oxide Photoconductor Made from Inkjet Printable Ionic Solution. Adv. Mater. 22(46), 5265-5270 (2010). doi:10.1002/adma.201002939

  112. Gur, I., Fromer, N.A., Geier, M.L., Alivisatos, A.P.: Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310(5747), 462-465 (2005). doi:10.1126/science.1117908

  113. Shao, D.L., Yu, M.P., Sun, H.T., Hu, T., Lian, J., Sawyer, S.: High responsivity, fast ultraviolet photodetector fabricated from ZnO nanoparticle-graphene core-shell structures. Nanoscale 5(9), 3664-3667 (2013). doi:10.1039/C3nr00369h

  114. Kishino, K., Unlu, M.S., Chyi, J.I., Reed, J., Arsenault, L., Morkoc, H.: Resonant Cavity-Enhanced (Rce) Photodetectors. IEEE J. Quantum Electron. 27(8), 2025-2034 (1991). doi:10.1109/3.83412

  115. Unlu, M.S., Strite, S.: Resonant-Cavity Enhanced Photonic Devices. J. Appl. Phys. 78(2), 607-639 (1995)

    Google Scholar 

  116. Jervase, J.A., Zebda, Y.: Characteristic analysis of resonant-cavity-enhanced (RCE) photodetectors. IEEE J. Quantum Electron. 34(7), 1129-1134 (1998). doi:10.1109/3.687854

  117. Bugajski, M., Muszalski, J., Mroziewicz, B., Reginski, K., Ochalski, T.J.: Resonant cavity enhanced photonic devices. Opt. Appl. 31(2), 273-288 (2001).

    Google Scholar 

  118. Bugajski, M., Muszalski, J., Ochalski, T., Katcki, J., Mroziewicz, B.: Resonant cavity enhanced photonic devices. Acta. Phys. Pol. A 101(1), 105-118 (2002).

    Google Scholar 

  119. Furchi, M., Urich, A., Pospischil, A., Lilley, G., Unterrainer, K., Detz, H., Klang, P., Andrews, A.M., Schrenk, W., Strasser, G., Mueller, T.: Microcavity-Integrated Graphene Photodetector. Nano Lett. 12(6), 2773-2777 (2012). doi:10.1021/Nl204512x

  120. Engel, M., Steiner, M., Lombardo, A., Ferrari, A.C., Löhneysen, H.v., Avouris, P., Krupke, R.: Light–matter interaction in a microcavity-controlled graphene transistor. Nat. Commun. 3, 906 (2012). doi:10.1038/ncomms1911

  121. Gan, X.T., Mak, K.F., Gao, Y.D., You, Y.M., Hatami, F., Hone, J., Heinz, T.F., Englund, D.: Strong Enhancement of Light-Matter Interaction in Graphene Coupled to a Photonic Crystal Nanocavity. Nano Lett. 12(11), 5626-5631 (2012). doi:10.1021/Nl302746n

  122. Shiue, R.J., Gan, X.T., Gao, Y.D., Li, L.Z., Yao, X.W., Szep, A., Walker, D., Hone, J., Englund, D.: Enhanced photodetection in graphene-integrated photonic crystal cavity. Appl. Phys. Lett. 103(24) (2013). doi:10.1063/1.4839235

  123. Gan, X.T., Shiue, R.J., Gao, Y.D., Assefa, S., Hone, J., Englund, D.: Controlled Light-Matter Interaction in Graphene Electrooptic Devices Using Nanophotonic Cavities and Waveguides. IEEE J. Sel. Top. Quant. 20(1), 600311 (2014). doi:10.1109/Jstqe.2013.2273412

  124. Piper, J.R., Fan, S.: Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance. ACS Photonics 1(4), 347-353 (2014). doi:10.1021/ph400090p

  125. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824-830 (2003). doi:10.1038/Nature01937

  126. Liedberg, B., Nylander, C., Lundstrom, I.: Surface-Plasmon Resonance for Gas-Detection and Biosensing. Sensor Actuator 4(2), 299-304 (1983). doi:10.1016/0250-6874(83)85036-7

  127. Nikolajsen, T., Leosson, K., Bozhevolnyi, S.I.: Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl. Phys. Lett. 85(24), 5833-5835 (2004). doi:10.1063/1.1835997

  128. Shi, S.F., Xu, X.D., Ralph, D.C., McEuen, P.L.: Plasmon Resonance in Individual Nanogap Electrodes Studied Using Graphene Nanoconstrictions as Photodetectors. Nano Lett. 11(4), 1814-1818 (2011). doi:10.1021/Nl200522t

  129. Zhang, Y.Z., Liu, T., Meng, B., Li, X.H., Liang, G.Z., Hu, X.N., Wang, Q.J.: Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 4, 1811 (2013). doi:10.1038/Ncomms2830

Download references

Acknowledgments

This work is supported by the grants from the National Natural Science Foundation of China (No. 11274344), the Hundred Talents Program of Chinese Academy of Sciences, the Scientific Research Foundation for the Returned Overseas Chinese Scholars and Suzhou Science and Technology Development Program Foundation (No. ZXG201425).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Song, S., Wen, L., Chen, Q. (2015). Graphene Composites Based Photodetectors. In: Sadasivuni, K., Ponnamma, D., Kim, J., Thomas, S. (eds) Graphene-Based Polymer Nanocomposites in Electronics. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13875-6_8

Download citation

Publish with us

Policies and ethics