Graphene Composites Based Photodetectors

Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

Graphene is an amazing material with unique electrical and optical properties that have never been observed in conventional materials. Graphene can absorb light from ultraviolet to infrared and transit carriers at a speed of 1/300 of light, which make graphene an excellent candidate for optoelectronic applications. Graphene composites consisting of graphene and other materials combine the high carrier mobility property of graphene and the excellent light absorption properties of other semiconductors, which are ideal for development of next-generation optoelectronic devices, especially photodetectors. In this chapter, we review the recent progress of graphene composite photodetectors with significant performance improvement compared to the original graphene photodetectors and discuss its future developments. We consider that graphene composite photodetectors would play an important role in future optical interconnect and imaging systems.

Keywords

Graphene Photodetector Composite 

List of Abbreviations

CVD

Chemical vapor deposition

CNT

Carbon nanotube

OLED

Organic light emitting devices

NW

Nanowire

QDs

Quantum dots

FET

Field-effect transistor

MSM

Metal-semiconductor-metal

IR

Infrared

UV

Ultraviolet

THz

Terahertz

Reference

  1. 1.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183-191 (2007). doi:10.1038/Nmat1849
  2. 2.
    Morozov, S.V., Novoselov, K.S., Katsnelson, M.I., Schedin, F., Elias, D.C., Jaszczak, J.A., Geim, A.K.: Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100(1), 016602 (2008). doi:10.1103/Physrevlett.100.016602
  3. 3.
    Mayorov, A.S., Gorbachev, R.V., Morozov, S.V., Britnell, L., Jalil, R., Ponomarenko, L.A., Blake, P., Novoselov, K.S., Watanabe, K., Taniguchi, T., Geim, A.K.: Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature. Nano Lett. 11(6), 2396-2399 (2011). doi:10.1021/Nl200758b
  4. 4.
    Lee, C., Wei, X.D., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385-388 (2008). doi::10.1126/science.1157996
  5. 5.
    Balandin, A.A., Ghosh, S., Bao, W.Z., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902-907 (2008). doi:10.1021/Nl0731872
  6. 6.
    Balandin, A.A., Ghosh, S., Nika, D.L., Pokatilov, E.P.: Thermal Conduction in Suspended Graphene Layers. Fuller. Nanotub. Car. N. 18(4-6), 474-486 (2010). doi:10.1080/1536383x.2010.487785
  7. 7.
    Choi, H., Borondics, F., Siegel, D.A., Zhou, S.Y., Martin, M.C., Lanzara, A., Kaindl, R.A.: Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene. Appl. Phys. Lett. 94, 172102 (2009). doi:10.1063/1.3122348
  8. 8.
    Zhao, W.S., Shi, K.F., Lu, Z.L.: Greatly enhanced ultrabroadband light absorption by monolayer graphene. Opt. Lett. 38(21), 4342-4345 (2013). doi:10.1364/Ol.38.004342
  9. 9.
    Liao, A.D., Wu, J.Z., Wang, X.R., Tahy, K., Jena, D., Dai, H.J., Pop, E.: Thermally Limited Current Carrying Ability of Graphene Nanoribbons. Phys. Rev. Lett. 106(25), 256801 (2011). doi:10.1103/Physrevlett.106.256801
  10. 10.
    Bae, M.H., Islam, S., Dorgan, V.E., Pop, E.: Scaling of High-Field Transport and Localized Heating in Graphene Transistors. ACS Nano 5(10), 7936-7944 (2011). doi:10.1021/nn202239y
  11. 11.
    Pop, E., Varshney, V., Roy, A.K.: Thermal properties of graphene: Fundamentals and applications. Mrs. Bull. 37(12), 1273-1281 (2012). doi:10.1557/mrs.2012.203
  12. 12.
    Xia, F.N., Mueller, T., Lin, Y.M., Valdes-Garcia, A., Avouris, P.: Ultrafast graphene photodetector. Nat. Nanotechnol. 4(12), 839-843 (2009). doi:10.1038/Nnano.2009.292
  13. 13.
    Koybasi, O., Childres, I., Jovanovic, I., Chen, Y.P.: Graphene field effect transistor as a radiation and photo detector. Proc. SPIE 8373, 83730H (2012). doi:10.1117/12.919628
  14. 14.
    Xia, F.N., Mueller, T., Golizadeh-Mojarad, R., Freitag, M., Lin, Y.M., Tsang, J., Perebeinos, V., Avouris, P.: Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor. Nano Lett. 9(3), 1039-1044 (2009). doi:10.1021/Nl8033812
  15. 15.
    Mueller, T., Xia, F.N.A., Avouris, P.: Graphene photodetectors for high-speed optical communications. Nat. Photonics 4(5), 297-301 (2010). doi:10.1038/Nphoton.2010.40
  16. 16.
    Echtermeyer, T.J., Britnell, L., Jasnos, P.K., Lombardo, A., Gorbachev, R.V., Grigorenko, A.N., Geim, A.K., Ferrari, A.C., Novoselov, K.S.: Strong plasmonic enhancement of photovoltage in graphene. Nat. Commun. 2, 458 (2011). doi:10.1038/ncomms1464
  17. 17.
    Liu, Y., Cheng, R., Liao, L., Zhou, H.L., Bai, J.W., Liu, G., Liu, L.X., Huang, Y., Duan, X.F.: Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2, 579 (2011). doi:10.1038/Ncomms1589
  18. 18.
    Liu, M., Yin, X.B., Ulin-Avila, E., Geng, B.S., Zentgraf, T., Ju, L., Wang, F., Zhang, X.: A graphene-based broadband optical modulator. Nature 474(7349), 64-67 (2011). doi:10.1038/Nature10067
  19. 19.
    Kim, K., Choi, J.Y., Kim, T., Cho, S.H., Chung, H.J.: A role for graphene in silicon-based semiconductor devices. Nature 479(7373), 338-344 (2011). doi:10.1038/Nature10680
  20. 20.
    Sensale-Rodriguez, B., Fang, T., Yan, R.S., Kelly, M.M., Jena, D., Liu, L., Xing, H.L.: Unique prospects for graphene-based terahertz modulators. Appl. Phys. Lett. 99(11), 113104 (2011). doi:10.1063/1.3636435
  21. 21.
    Lu, Z.L., Zhao, W.S.: Nanoscale electro-optic modulators based on graphene-slot waveguides. J. Opt. Soc. Am. B 29(6), 1490-1496 (2012). doi:10.1364/JOSAB.29.001490
  22. 22.
    Bao, Q.L., Zhang, H., Wang, B., Ni, Z.H., Lim, C.H.Y.X., Wang, Y., Tang, D.Y., Loh, K.P.: Broadband graphene polarizer. Nat. Photonics 5(7), 411-415 (2011). doi:10.1038/Nphoton.2011.102.
  23. 23.
    Wang, X., Zhi, L.J., Mullen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323-327 (2008). doi:10.1021/nl072838r
  24. 24.
    Bae, S., Kim, H., Lee, Y., Xu, X.F., Park, J.S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.J., Kim, K.S., Ozyilmaz, B., Ahn, J.H., Hong, B.H., Iijima, S.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574-578 (2010). doi:10.1038/Nnano.2010.132.
  25. 25.
    Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. P. Natl. Acad. Sci. USA 102(30), 10451-10453 (2005). doi:10.1073/pnas.0502848102
  26. 26.
    Li, X.S., Cai, W.W., An, J.H., Kim, S., Nah, J., Yang, D.X., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S.: Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 324(5932), 1312-1314 (2009). doi:10.1126/science.1171245
  27. 27.
    Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z.Y., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563-568 (2008). doi:10.1038/nnano.2008.215
  28. 28.
    Cai, J.M., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X.L., Mullen, K., Fasel, R.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466(7305), 470-473 (2010). doi:10.1038/Nature09211
  29. 29.
    Lin, Y.M., Dimitrakopoulos, C., Jenkins, K.A., Farmer, D.B., Chiu, H.Y., Grill, A., Avouris, P.: 100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science 327(5966), 662-662 (2010). doi:10.1126/science.1184289
  30. 30.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666-669 (2004). doi:10.1126/science.1102896
  31. 31.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197-200 (2005). doi:10.1038/Nature04233
  32. 32.
    Geim, A.K.: Nobel Lecture: Random walk to graphene. Rev. Mod. Phys. 83(3), 851-862 (2011). doi:10.1103/RevModPhys.83.851.
  33. 33.
    Huang, X., Qi, X.Y., Boey, F., Zhang, H.: Graphene-based composites. Chem. Soc. Rev. 41(2), 666-686 (2012). doi:10.1039/C1cs15078b
  34. 34.
    Qi, X.Y., Pu, K.Y., Li, H., Zhou, X.Z., Wu, S.X., Fan, Q.L., Liu, B., Boey, F., Huang, W., Zhang, H.: Amphiphilic Graphene Composites. Angew. Chem. Int. Edit. 49(49), 9426-9429 (2010). doi:10.1002/anie.201004497
  35. 35.
    Qi, X.Y., Pu, K.Y., Zhou, X.Z., Li, H., Liu, B., Boey, F., Huang, W., Zhang, H.: Conjugated-Polyelectrolyte-Functionalized Reduced Graphene Oxide with Excellent Solubility and Stability in Polar Solvents. Small 6(5), 663-669 (2010). doi:10.1002/smll.200902221
  36. 36.
    Yang, H.F., Zhang, Q.X., Shan, C.S., Li, F.H., Han, D.X., Niu, L.: Stable, Conductive Supramolecular Composite of Graphene Sheets with Conjugated Polyelectrolyte. Langmuir 26(9), 6708-6712 (2010). doi:10.1021/La100365z
  37. 37.
    Wu, S.X., Yin, Z.Y., He, Q.Y., Huang, X.A., Zhou, X.Z., Zhang, H.: Electrochemical Deposition of Semiconductor Oxides on Reduced Graphene Oxide-Based Flexible, Transparent, and Conductive Electrodes. J. Phys. Chem. C 114(27), 11816-11821 (2010). doi:10.1021/Jp103696u
  38. 38.
    Yin, Z.Y., Wu, S.X., Zhou, X.Z., Huang, X., Zhang, Q.C., Boey, F., Zhang, H.: Electrochemical Deposition of ZnO Nanorods on Transparent Reduced Graphene Oxide Electrodes for Hybrid Solar Cells. Small 6(2), 307-312 (2010). doi:10.1002/smll.200901968
  39. 39.
    Tung, V.C., Chen, L.M., Allen, M.J., Wassei, J.K., Nelson, K., Kaner, R.B., Yang, Y.: Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors. Nano Lett. 9(5), 1949-1955 (2009). doi:10.1021/Nl9001525
  40. 40.
    Lu, R.T., Christianson, C., Weintrub, B., Wu, J.Z.: High Photoresponse in Hybrid Graphene-Carbon Nanotube Infrared Detectors. ACS Appl. Mater. Inter. 5(22), 11703-11707 (2013). doi:10.1021/Am4033313
  41. 41.
    Shi, W.H., Zhu, J.X., Sim, D.H., Tay, Y.Y., Lu, Z.Y., Zhang, X.J., Sharma, Y., Srinivasan, M., Zhang, H., Hng, H.H., Yan, Q.Y.: Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. J. Mater. Chem. 21(10), 3422-3427 (2011). doi:10.1039/C0jm03175e
  42. 42.
    Li, F.H., Song, J.F., Yang, H.F., Gan, S.Y., Zhang, Q.X., Han, D.X., Ivaska, A., Niu, L.: One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology 20(45) (2009). doi:10.1088/0957-4484/20/45/455602
  43. 43.
    Cai, W.W., Zhu, Y.W., Li, X.S., Piner, R.D., Ruoff, R.S.: Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Appl. Phys. Lett. 95(12) (2009). doi:10.1063/1.3220807
  44. 44.
    Yin, Z.Y., Sun, S.Y., Salim, T., Wu, S.X., Huang, X.A., He, Q.Y., Lam, Y.M., Zhang, H.: Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes. ACS Nano 4(9), 5263-5268 (2010). doi:10.1021/Nn1015874
  45. 45.
    Li, X.M., Zhu, H.W., Wang, K.L., Cao, A.Y., Wei, J.Q., Li, C.Y., Jia, Y., Li, Z., Li, X., Wu, D.H.: Graphene-On-Silicon Schottky Junction Solar Cells. Adv. Mater. 22(25), 2743 (2010). doi:10.1002/adma.200904383
  46. 46.
    Shao, D.L., Sawyer, S., Hu, T., Yu, M.P., Lian, J.: Photoconductive Enhancement Effects of Graphene Quantum Dots on ZnO Nanoparticle Photodetectors. P. IEEE Les. Eastm. (2012)Google Scholar
  47. 47.
    Radoi, A., Dragoman, M., Cismaru, A., Konstantinidis, G., Dragoman, D.: Light-Harvesting Using Metallic Interdigitated Structures Modified with Au Sputtered Graphene. International Semiconductor Conference 2, 117-120 (2012)Google Scholar
  48. 48.
    Chang, H.X., Sun, Z.H., Ho, K.Y.F., Tao, X.M., Yan, F., Kwok, W.M., Zheng, Z.J.: A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure. Nanoscale 3(1), 258-264 (2011). doi:10.1039/C0nr00588f
  49. 49.
    Shao, D.L., Sun, X., Xie, M., Sun, H.T., Lu, F.Y., George, S.M., Lian, J., Sawyer, S.: ZnO quantum dots-graphene composite for efficient ultraviolet sensing. Mater. Lett. 112, 165-168 (2013). doi:10.1016/j.matlet.2013.09.031.
  50. 50.
    Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature 490(7419), 192-200 (2012). doi:10.1038/Nature11458
  51. 51.
    Reina, A., Son, H.B., Jiao, L.Y., Fan, B., Dresselhaus, M.S., Liu, Z.F., Kong, J.: Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates. J. Phys. Chem. C 112(46), 17741-17744 (2008). doi:10.1021/Jp807380s
  52. 52.
    Koppens, F.H.L., Chang, D.E., de Abajo, F.J.G.: Graphene Plasmonics: A Platform for Strong Light-Matter Interactions. Nano Lett. 11(8), 3370-3377 (2011). doi:10.1021/Nl201771h
  53. 53.
    Gusynin, V.P., Sharapov, S.G., Carbotte, J.P.: Sum rules for the optical and Hall conductivity in graphene. Phys. Rev. B 75(165407), 165407 (2007). doi:10.1103/Physrevb.75.165407
  54. 54.
    Mak, K.F., Sfeir, M.Y., Wu, Y., Lui, C.H., Misewich, J.A., Heinz, T.F.: Measurement of the Optical Conductivity of Graphene. Phys. Rev. Lett. 101(19), 196405 (2008). doi:10.1103/Physrevlett.101.196405
  55. 55.
    Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008). doi: 10.1126/science.1156965
  56. 56.
    Kuzmenko, A.B., van Heumen, E., Carbone, F., van der Marel, D.: Universal optical conductance of graphite. Phys. Rev. Lett. 100(11), 117401 (2008). doi:10.1103/Physrevlett.100.117401
  57. 57.
    Li, Z.Q., Henriksen, E.A., Jiang, Z., Hao, Z., Martin, M.C., Kim, P., Stormer, H.L., Basov, D.N.: Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys. 4(7), 532-535 (2008). doi:10.1038/Nphys989
  58. 58.
    Weiss, N.O., Zhou, H.L., Liao, L., Liu, Y., Jiang, S., Huang, Y., Duan, X.F.: Graphene: An Emerging Electronic Material. Adv. Mater. 24(43), 5782-5825 (2012). doi:10.1002/adma.201201482
  59. 59.
    Brody, H.: Graphene. Nature 483(7389), S29-S29 (2012). doi:10.1038/483S29a.
  60. 60.
    Reed, G.T., Mashanovich, G., Gardes, F.Y., Thomson, D.J.: Silicon optical modulators. Nat. Photonics 4(8), 518-526 (2010). doi:10.1038/nphoton.2010.179
  61. 61.
    Datta, S., Das, B.: Electronic Analog of the Electrooptic Modulator. Appl. Phys. Lett. 56(7), 665-667 (1990). doi:10.1063/1.102730
  62. 62.
    Gosciniak, J., Bozhevolnyi, S.I., Andersen, T.B., Volkov, V.S., Kjelstrup-Hansen, J., Markey, L., Dereux, A.: Thermo-optic control of dielectric-loaded plasmonic waveguide components. Opt. Express 18(2), 1207-1216 (2010). doi:10.1364/OE.18.001207
  63. 63.
    Gordon, E.I.: A Review of Acoustooptical Deflection and Modulation Devices. Appl. Optics 5(10), 1629 (1966). doi:10.1364/Ao.5.001629
  64. 64.
    Kuo, Y.H., Chen, H.W., Bowers, J.E.: High speed hybrid silicon evanescent electroabsorption modulator. Opt. Express 16(13), 9936-9941 (2008). doi:10.1364/Oe.16.009936.
  65. 65.
    Liu, M., Yin, X.B., Zhang, X.: Double-Layer Graphene Optical Modulator. Nano Lett. 12(3), 1482-1485 (2012). doi:10.1021/Nl204202k
  66. 66.
    Yan, K., Wu, D., Peng, H.L., Jin, L., Fu, Q., Bao, X.H., Liu, Z.F.: Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation. Nat. Commun. 3, 1280 (2012). doi:10.1038/Ncomms2286
  67. 67.
    Gosciniak, J., Tan, D.T.H.: Theoretical investigation of graphene-based photonic modulators. Sci. Rep. 3, 1897 (2013). doi:10.1038/Srep01897
  68. 68.
    Chenran, Y., Khan, S., Zhuo Ran, L., Simsek, E., Sorger, V.J.: λ-Size ITO and Graphene-Based Electro-Optic Modulators on SOI. Selected Topics in Quantum Electronics, IEEE Journal of 20(4) (2014). doi:10.1109/JSTQE.2014.2298451
  69. 69.
    Song, S.C., Chen, Q., Jin, L., Sun, F.H.: Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber. Nanoscale 5(20), 9615-9619 (2013). doi:10.1039/C3nr03505k
  70. 70.
    Vicarelli, L., Vitiello, M.S., Coquillat, D., Lombardo, A., Ferrari, A.C., Knap, W., Polini, M., Pellegrini, V., Tredicucci, A.: Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11(10), 865-871 (2012). doi:10.1038/Nmat3417
  71. 71.
    Chang, C.W., Wang, D.Y., Tan, W.C., Huang, I.S., Wang, I.S., Chen, C.C., Yang, Y.J., Chen, Y.F.: Enhanced performance of photodetector and photovoltaic based on carrier reflector and back surface field generated by doped graphene. Appl. Phys. Lett. 101(7), 073906 (2012). doi:10.1063/1.4746763
  72. 72.
    Prechtel, L., Song, L., Schuh, D., Ajayan, P., Wegscheider, W., Holleitner, A.W.: Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene. Nat. Commun. 3, 646 (2012). doi:10.1038/ncomms1656
  73. 73.
    Vora, H., Kumaravadivel, P., Nielsen, B., Du, X.: Bolometric response in graphene based superconducting tunnel junctions. Appl. Phys. Lett. 100(15) (2012). doi:10.1063/1.3703117
  74. 74.
    Fang, Z.Y., Liu, Z., Wang, Y.M., Ajayan, P.M., Nordlander, P., Halas, N.J.: Graphene-Antenna Sandwich Photodetector. Nano Lett. 12(7), 3808-3813 (2012). doi:10.1021/Nl301774e
  75. 75.
    Thongrattanasiri, S., Koppens, F.H.L., de Abajo, F.J.G.: Complete Optical Absorption in Periodically Patterned Graphene. Phys. Rev. Lett. 108(4), 047401 (2012). doi:10.1103/Physrevlett.108.047401
  76. 76.
    Xu, J.L., Li, X.L., He, J.L., Hao, X.P., Wu, Y.Z., Yang, Y., Yang, K.J.: Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser. Appl. Phys. Lett. 99(26), 261107 (2011). doi:10.1063/1.3672213
  77. 77.
    Wang, Z.F., Liu, F.: Manipulation of Electron Beam Propagation by Hetero-Dimensional Graphene Junctions. ACS Nano 4(4), 2459-2465 (2010). doi:10.1021/Nn1001722
  78. 78.
    Ju, L., Geng, B.S., Horng, J., Girit, C., Martin, M., Hao, Z., Bechtel, H.A., Liang, X.G., Zettl, A., Shen, Y.R., Wang, F.: Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6(10), 630-634 (2011). doi:10.1038/Nnano.2011.146
  79. 79.
    Lee, S.H., Choi, M., Kim, T.T., Lee, S., Liu, M., Yin, X., Choi, H.K., Lee, S.S., Choi, C.G., Choi, S.Y., Zhang, X., Min, B.: Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater. 11(11), 936-941 (2012). doi:10.1038/Nmat3433
  80. 80.
    Ramakrishnan, G., Chakkittakandy, R., Planken, P.C.M.: Terahertz generation from graphite. Opt. Express 17(18), 16092-16099 (2009). doi:10.1364/OE.17.016092
  81. 81.
    Mittendorff, M., Winnerl, S., Kamann, J., Eroms, J., Weiss, D., Schneider, H., Helm, M.: Ultrafast graphene-based broadband THz detector. Appl. Phys. Lett. 103(2), 021113 (2013). doi:10.1063/1.4813621
  82. 82.
    Ryzhii, V., Ryzhii, M.: Graphene bilayer field-effect phototransistor for terahertz and infrared detection. Phys. Rev. B 79(24) (2009). doi:10.1103/Physrevb.79.245311
  83. 83.
    Yang, H.Y., Son, D.I., Kim, T.W., Lee, J.M., Park, W.I.: Enhancement of the photocurrent in ultraviolet photodetectors fabricated utilizing hybrid polymer-ZnO quantum dot nanocomposites due to an embedded graphene layer. Org. Electron. 11(7), 1313-1317 (2010). doi:10.1016/j.orgel.2010.04.009
  84. 84.
    Singh, R.S., Nalla, V., Chen, W., Wee, A.T.S., Ji, W.: Laser Patterning of Epitaxial Graphene for Schottky Junction Photodetectors. ACS Nano 5(7), 5969-5975 (2011). doi:10.1021/Nn201757j
  85. 85.
    Fu, X.W., Liao, Z.M., Zhou, Y.B., Wu, H.C., Bie, Y.Q., Xu, J., Yu, D.P.: Graphene/ZnO nanowire/graphene vertical structure based fast-response ultraviolet photodetector. Appl. Phys. Lett. 100(22), 223114 (2012). doi:10.1063/1.4724208
  86. 86.
    Zhang, W.J., Chuu, C.P., Huang, J.K., Chen, C.H., Tsai, M.L., Chang, Y.H., Liang, C.T., Chen, Y.Z., Chueh, Y.L., He, J.H., Chou, M.Y., Li, L.J.: Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Sci. Rep. 4, 3826 (2014). doi:10.1038/Srep03826
  87. 87.
    Liu, C.H., Chang, Y.C., Norris, T.B., Zhong, Z.: Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9(4), 273-278 (2014). doi:10.1038/nnano.2014.31
  88. 88.
    Li, J., Niu, L., Zheng, Z., Yan, F.: Photosensitive Graphene Transistors. Adv. Mater. 26(31), 5239-5273 (2014). doi:10.1002/adma.201400349
  89. 89.
    Ryzhii, V., Ryzhii, M., Mitin, V., Otsuji, T.: Terahertz and infrared photodetection using p-i-n multiple-graphene-layer structures. J. Appl. Phys. 107(5), 054512 (2010). doi:10.1063/1.3327441
  90. 90.
    Ryzhii, V., Ryzhii, M., Ryabova, N., Mitin, V., Otsuji, T.: Terahertz and infrared detectors based on graphene structures. Infrared Phys. Techn. 54(3), 302-305 (2011). doi:10.1016/j.infrared.2010.12.034
  91. 91.
    Ryzhii, M., Otsuji, T., Mitin, V., Ryzhii, V.: Characteristics of p-i-n Terahertz and Infrared Photodiodes Based on Multiple Graphene Layer Structures. Jpn. J. Appl. Phys. 50(7), 070117 (2011). doi:10.1143/Jjap.50.070117
  92. 92.
    An, X.H., Liu, F.Z., Jung, Y.J., Kar, S.: Tunable Graphene-Silicon Heterojunctions for Ultrasensitive Photodetection. Nano Lett. 13(3), 909-916 (2013). doi:10.1021/Nl303682j
  93. 93.
    Amirmazlaghani, M., Raissi, F., Habibpour, O., Vukusic, J., Stake, J.: Graphene-Si Schottky IR Detector. IEEE J. Quantum Electron. 49(7), 589-594 (2013). doi:10.1109/Jqe.2013.2261472
  94. 94.
    Casalino, M., Coppola, G., Iodice, M., Rendina, I., Sirleto, L.: Near-Infrared All-Silicon Photodetectors. International J. Photoenergy 2012, 139278 (2012). doi:10.1155/2012/139278
  95. 95.
    Zeng, L.H., Wang, M.Z., Hu, H., Nie, B., Yu, Y.Q., Wu, C.Y., Wang, L., Hu, J.G., Xie, C., Liang, F.X., Luo, L.B.: Monolayer Graphene/Germanium Schottky Junction As High-Performance Self-Driven Infrared Light Photodetector. ACS Appl. Mater. Inter. 5(19), 9362-9366 (2013). doi:10.1021/Am4026505
  96. 96.
    Jin, W.F., Ye, Y., Gan, L., Yu, B., Wu, P.C., Dai, Y., Meng, H., Guo, X.F., Dai, L.: Self-powered high performance photodetectors based on CdSe nanobelt/graphene Schottky junctions. J. Mater. Chem. 22(7), 2863-2867 (2012). doi:10.1039/C2jm15913a
  97. 97.
    Gao, Z.W., Jin, W.F., Zhou, Y., Dai, Y., Yu, B., Liu, C., Xu, W.J., Li, Y.P., Peng, H.L., Liu, Z.F., Dai, L.: Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene Schottky junctions. Nanoscale 5(12), 5576-5581 (2013). doi:10.1039/C3nr34335a
  98. 98.
    Soci, C., Zhang, A., Bao, X.Y., Kim, H., Lo, Y., Wang, D.L.: Nanowire Photodetectors. J. Nanosci. Nanotechnol. 10(3), 1430-1449 (2010). doi:10.1166/jnn.2010.2157
  99. 99.
    Soci, C., Zhang, A., Xiang, B., Dayeh, S.A., Aplin, D.P.R., Park, J., Bao, X.Y., Lo, Y.H., Wang, D.: ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7(4), 1003-1009 (2007). doi:10.1021/Nl070111x
  100. 100.
    Bugallo, A.D., Tchernycheva, M., Jacopin, G., Rigutti, L., Julien, F.H., Chou, S.T., Lin, Y.T., Tseng, P.H., Tu, L.W.: Visible-blind photodetector based on p-i-n junction GaN nanowire ensembles. Nanotechnology 21(31), 315201 (2010). doi:10.1088/0957-4484/21/31/315201
  101. 101.
    Lee, H., Heo, K., Park, J., Park, Y., Noh, S., Kim, K.S., Lee, C., Hong, B.H., Jian, J., Hong, S.: Graphene-nanowire hybrid structures for high-performance photoconductive devices. J. Mater. Chem. 22(17), 8372-8376 (2012). doi:10.1039/C2jm16565a
  102. 102.
    Zhang, H., Babichev, A.V., Jacopin, G., Lavenus, P., Julien, F.H., Egorov, A.Y., Zhang, J., Pauporte, T., Tchernycheva, M.: Characterization and modeling of a ZnO nanowire ultraviolet photodetector with graphene transparent contact. J. Appl. Phys. 114(23), 234505 (2013). doi:10.1063/1.4854455
  103. 103.
    Nie, B.A., Hu, J.G., Luo, L.B., Xie, C., Zeng, L.H., Lv, P., Li, F.Z., Jie, J.S., Feng, M., Wu, C.Y., Yu, Y.Q., Yu, S.H.: Monolayer Graphene Film on ZnO Nanorod Array for High-Performance Schottky Junction Ultraviolet Photodetectors. Small 9(17), 2872-2879 (2013). doi:10.1002/smll.201203188
  104. 104.
    Babichev, A.V., Zhang, H., Lavenus, P., Julien, F.H., Egorov, A.Y., Lin, Y.T., Tu, L.W., Tchernycheva, M.: GaN nanowire ultraviolet photodetector with a graphene transparent contact. Appl. Phys. Lett. 103(20), 201103 (2013). doi:10.1063/1.4829756
  105. 105.
    Wang, M.Z., Liang, F.X., Nie, B., Zeng, L.H., Zheng, L.X., Lv, P., Yu, Y.Q., Xie, C., Li, Y.Y., Luo, L.B.: TiO2 Nanotube Array/Monolayer Graphene Film Schottky Junction Ultraviolet Light Photodetectors. Partical & Particle Systems Characterization 30(7), 630-636 (2013). doi:10.1002/ppsc.201300040
  106. 106.
    Xu, Q., Cheng, Q.J., Zhong, J.X., Cai, W.W., Zhang, Z.F., Wu, Z.Y., Zhang, F.Y.: A metal-semiconductor-metal detector based on ZnO nanowires grown on a graphene layer. Nanotechnology 25(5), 5 (2014). doi:10.1088/0957-4484/25/5/055501
  107. 107.
    Jin, Y., Wang, J., Sun, B., Blakesley, J.C., Greenham, N.C.: Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles. Nano Lett. 8(6), 1649-1653 (2008). doi:10.1021/nl0803702
  108. 108.
    Tsai, D.S., Lin, C.A., Lien, W.C., Chang, H.C., Wang, Y.L., He, J.H.: Ultra-High-Responsivity Broadband Detection of Si Metal-Semiconductor-Metal Schottky Photodetectors Improved by ZnO Nanorod Arrays. ACS Nano 5(10), 7748-7753 (2011). doi:10.1021/Nn203357e
  109. 109.
    Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., de Arquer, F.P.G., Gatti, F., Koppens, F.H.L.: Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7(6), 363-368 (2012). doi:10.1038/Nnano.2012.60
  110. 110.
    Manga, K.K., Wang, J.Z., Lin, M., Zhang, J., Nesladek, M., Nalla, V., Ji, W., Loh, K.P.: High-Performance Broadband Photodetector Using Solution-Processible PbSe-TiO2-Graphene Hybrids. Adv. Mater. 24(13), 1697-1702 (2012). doi:10.1002/adma.201104399
  111. 111.
    Manga, K.K., Wang, S., Jaiswal, M., Bao, Q.L., Loh, K.P.: High-Gain Graphene-Titanium Oxide Photoconductor Made from Inkjet Printable Ionic Solution. Adv. Mater. 22(46), 5265-5270 (2010). doi:10.1002/adma.201002939
  112. 112.
    Gur, I., Fromer, N.A., Geier, M.L., Alivisatos, A.P.: Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310(5747), 462-465 (2005). doi:10.1126/science.1117908
  113. 113.
    Shao, D.L., Yu, M.P., Sun, H.T., Hu, T., Lian, J., Sawyer, S.: High responsivity, fast ultraviolet photodetector fabricated from ZnO nanoparticle-graphene core-shell structures. Nanoscale 5(9), 3664-3667 (2013). doi:10.1039/C3nr00369h
  114. 114.
    Kishino, K., Unlu, M.S., Chyi, J.I., Reed, J., Arsenault, L., Morkoc, H.: Resonant Cavity-Enhanced (Rce) Photodetectors. IEEE J. Quantum Electron. 27(8), 2025-2034 (1991). doi:10.1109/3.83412
  115. 115.
    Unlu, M.S., Strite, S.: Resonant-Cavity Enhanced Photonic Devices. J. Appl. Phys. 78(2), 607-639 (1995)Google Scholar
  116. 116.
    Jervase, J.A., Zebda, Y.: Characteristic analysis of resonant-cavity-enhanced (RCE) photodetectors. IEEE J. Quantum Electron. 34(7), 1129-1134 (1998). doi:10.1109/3.687854
  117. 117.
    Bugajski, M., Muszalski, J., Mroziewicz, B., Reginski, K., Ochalski, T.J.: Resonant cavity enhanced photonic devices. Opt. Appl. 31(2), 273-288 (2001). Google Scholar
  118. 118.
    Bugajski, M., Muszalski, J., Ochalski, T., Katcki, J., Mroziewicz, B.: Resonant cavity enhanced photonic devices. Acta. Phys. Pol. A 101(1), 105-118 (2002). Google Scholar
  119. 119.
    Furchi, M., Urich, A., Pospischil, A., Lilley, G., Unterrainer, K., Detz, H., Klang, P., Andrews, A.M., Schrenk, W., Strasser, G., Mueller, T.: Microcavity-Integrated Graphene Photodetector. Nano Lett. 12(6), 2773-2777 (2012). doi:10.1021/Nl204512x
  120. 120.
    Engel, M., Steiner, M., Lombardo, A., Ferrari, A.C., Löhneysen, H.v., Avouris, P., Krupke, R.: Light–matter interaction in a microcavity-controlled graphene transistor. Nat. Commun. 3, 906 (2012). doi:10.1038/ncomms1911
  121. 121.
    Gan, X.T., Mak, K.F., Gao, Y.D., You, Y.M., Hatami, F., Hone, J., Heinz, T.F., Englund, D.: Strong Enhancement of Light-Matter Interaction in Graphene Coupled to a Photonic Crystal Nanocavity. Nano Lett. 12(11), 5626-5631 (2012). doi:10.1021/Nl302746n
  122. 122.
    Shiue, R.J., Gan, X.T., Gao, Y.D., Li, L.Z., Yao, X.W., Szep, A., Walker, D., Hone, J., Englund, D.: Enhanced photodetection in graphene-integrated photonic crystal cavity. Appl. Phys. Lett. 103(24) (2013). doi:10.1063/1.4839235
  123. 123.
    Gan, X.T., Shiue, R.J., Gao, Y.D., Assefa, S., Hone, J., Englund, D.: Controlled Light-Matter Interaction in Graphene Electrooptic Devices Using Nanophotonic Cavities and Waveguides. IEEE J. Sel. Top. Quant. 20(1), 600311 (2014). doi:10.1109/Jstqe.2013.2273412
  124. 124.
    Piper, J.R., Fan, S.: Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance. ACS Photonics 1(4), 347-353 (2014). doi:10.1021/ph400090p
  125. 125.
    Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824-830 (2003). doi:10.1038/Nature01937
  126. 126.
    Liedberg, B., Nylander, C., Lundstrom, I.: Surface-Plasmon Resonance for Gas-Detection and Biosensing. Sensor Actuator 4(2), 299-304 (1983). doi:10.1016/0250-6874(83)85036-7
  127. 127.
    Nikolajsen, T., Leosson, K., Bozhevolnyi, S.I.: Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl. Phys. Lett. 85(24), 5833-5835 (2004). doi:10.1063/1.1835997
  128. 128.
    Shi, S.F., Xu, X.D., Ralph, D.C., McEuen, P.L.: Plasmon Resonance in Individual Nanogap Electrodes Studied Using Graphene Nanoconstrictions as Photodetectors. Nano Lett. 11(4), 1814-1818 (2011). doi:10.1021/Nl200522t
  129. 129.
    Zhang, Y.Z., Liu, T., Meng, B., Li, X.H., Liang, G.Z., Hu, X.N., Wang, Q.J.: Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 4, 1811 (2013). doi:10.1038/Ncomms2830

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Key Lab of Nanodevices and Applications, Collaborative Innovation Center of Suzhou Nano Science and TechnologySuzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS)SuzhouChina

Personalised recommendations