Skip to main content

Graphene Filled Polymers for Vapor/Gas Sensor Applications

  • Chapter
  • First Online:
Graphene-Based Polymer Nanocomposites in Electronics

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

  • 4515 Accesses

Abstract

With their unique and excellent properties such as high carrier mobility and high surface area, graphene-base materials have shown great promise as efficient sensing materials for highly sensitive and low noise sensors. Graphene offers some important advantages over other carbon-based materials such as carbon nanotubes (CNTs), which includes enhanced sensitivity and low inherent electrical noise. These merits mainly comes from their structural features, as it is composed of all surface carbon atoms with large and flat geometry enabling high sensitivity and low contact resistance. Moreover, their surface can be functionalized with organic molecules (e.g., polymers, nanocrystalline , bio-molecular), and surface molecules on graphene surface can also be used as gas/vapor sensing materials that promote the sensing capability of overall composites. This has sparked interests in the development of highly sensitive and selective gas/vapor sensors based on graphene-based materials and their polymer composites. In this review, recent progress on graphene and its composites will be discussed in the context of their use in sensors. It mainly focuses on how engineering graphene with other functional molecules can affect their ability to detect a number of different gas/vapor. It also emphasizes achievements made with graphene-filled polymer composites for gas/vapor sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Polleux, A. Gurlo, N. Barsan, U. Weimar, M. Antonietti, M. Niederberger. Angew. Chem. 2006, 118, 267.

    Google Scholar 

  2. C. K. Ho, A. Robinson, D. R. Miller, M. J. Davis. Sensors 2005, 5, 4–37.

    Google Scholar 

  3. S. Su, W. Wu, J. Gao, J. Lu, C. Fan. J. Mater. Chem. 2012, 22, 18101–18110.

    Google Scholar 

  4. I. A. Casalinuovo, D. D. Pierro, M. Coletta, P. D. Francesco. Sensors 2006, 6, 1428.

    Google Scholar 

  5. P. Hu, J. Zhang, L. Li, Z. Wang, W. O’Neill, P. Estrela. Sensors 2010, 10, 5133.

    Google Scholar 

  6. O. S. Wenger. Chem. Rev.113, 2013, 3685–3733.

    Google Scholar 

  7. H. J. Dai. 2001 Carbon Nanotubes (Springer: Berlin).

    Google Scholar 

  8. Y. P. Sun, K. Fu, Y. Lin, W. Huang. Acc. Chem. Res. 2002, 35, 1096–104.

    Google Scholar 

  9. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai. Science 2000, 287, 622–625.

    Google Scholar 

  10. J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan. Nano lett. 2003, 3, 929–933.

    Google Scholar 

  11. A. Modi, N. Koratkar, E. Lass, B. Wei, P. M. Ajayan. Nature 2003, 424, 171–174.

    Google Scholar 

  12. J. F. Feller, J. Lu, K. Zhang, B. Kumar, M. Castro, N. Gatt, H. J Choi. J. Mater. Chem. 2011, 21, 4142–4149.

    Google Scholar 

  13. B. Kumar, M. Castro, J. F. Feller. J. Mater. Chem. 2012, 22, 10656–10664.

    Google Scholar 

  14. J.C. Bonner. Expert Rev Respir Med. 2011, 5, 779–787.

    Google Scholar 

  15. K. Kostarelos. Nat. Biotech. 2008, 26, 774–776.

    Google Scholar 

  16. K. Donaldson, C. A. Poland. Nat. Nanotech. 2009, 4, 708–710.

    Google Scholar 

  17. H. C. Nerl, C. Cheng, A. E. Goode, S. D. Bergin, B. Lich, M. Gass, and A. E Porter. Nanomedicine 2011 6, 849–865.

    Google Scholar 

  18. C. Lee, X. Wei, J. W. Kysar, J. Hone. Science 2008, 321, 385–388.

    Google Scholar 

  19. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau. Nano Lett. 2008, 8, 902–907.

    Google Scholar 

  20. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer. Solid State Commun. 2008, 146, 351–355.

    Google Scholar 

  21. H. G. Park, S. Hwang, J. Lim, D. H. Kim, I. S. Song, J. H. Kim, D. H. Woo, S. Lee, S. C. Jun. Jpn. J. Appl. Phys. 2012, 51, 045101.

    Google Scholar 

  22. J. Z. Zhang. J. Phys. Chem. Lett. 2012, 3, 1806−1807.

    Google Scholar 

  23. Q. He, S. Wu, Z. Yin, H. Zhang. Chem. Sci. 2012, 3, 1764.

    Google Scholar 

  24. S. Mao, G. Lu. J. Chen. J. Mater. Chem. A 2014, 2, 5573.

    Google Scholar 

  25. W. Yuan, G. Shi. J. Mater. Chem. A 2013, 1,10078.

    Google Scholar 

  26. F. Yavari, N. Koratkar. J. Phys. Chem. Lett. 2012, 3, 1746−1753.

    Google Scholar 

  27. Y. Zhang, L. Zhang, C. Zhou. Acc Chem Res 2013, 46, 2329–2339.

    Google Scholar 

  28. G. H. Lu, S. Park, K. H. Yu, R. S. Ruoff, L. E. Ocola, D. Rosenmann, J. H. Chen. ACS Nano 2011, 5, 1154–1164.

    Google Scholar 

  29. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,Y. Zhang, S. V. Dubonos, et al. Science 2004, 306, 666–669.

    Google Scholar 

  30. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, et al. Nature 2009, 457, 706–710.

    Google Scholar 

  31. C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, et al. Science 2006, 312, 1191–1198.

    Google Scholar 

  32. S. Park, R. S. Ruoff. Nat Nanotechnol. 2009, 4, 217–224.

    Google Scholar 

  33. S. Gilje, S. Han, M. S. Wang, K. L. Wang, R. B. Kaner. Nano Lett. 2007, 7, 3394–3398.

    Google Scholar 

  34. W. Gao, L. B. Alemary, L. Gi, P. M. Ajayan. Nature Chem. 2009, 1, 403–408.

    Google Scholar 

  35. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov. Nat Mater. 2007, 6, 652–655.

    Google Scholar 

  36. S. Rumyantsev, G. Liu, M. S. Shur, R. A. Potyrailo, A. A. Balandin. Nano Lett. 2012, 12, 2294−2298.

    Google Scholar 

  37. R. K. Joshi, H. Gomez, F. Alvi, A. Kumar. J Phys Chem C 2010, 114, 6610–6613.

    Google Scholar 

  38. J. Hass, W. A. de Heer and E. H. Conrad. J. Phys.: Condens. Matter. 2008, 20, 323202.

    Google Scholar 

  39. R. Pearce, J. Eriksson, T. Iakimov, L. Hultman, A. L. Spetz, R. Yakimova. ACS Nano. 2013, 7, 4647–4656.

    Google Scholar 

  40. Iezhokin, P. Offermans, S. H. Brongersma, A. J. M. Giesbers, C. F. J. Flipse. Appl. Phys. Lett. 2013, 103, 053514.

    Google Scholar 

  41. X. S. Li, W. W. Cai, A. Jinho, K. Seyoung, N. Junghyo, D. X. Yang, R. Piner, A. Velamakanni, J. Inhwa, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff. Science 2009, 324, 1312–1314.

    Google Scholar 

  42. C. W. Chen, S. C. Hung, M. D. Yang, C. W. Yeh, C. H. Wu, G. C. Chi, F. Ren, S. Pearton. J. Appl. Phys. Lett. 2011, 99, 243502.

    Google Scholar 

  43. A. Cagliani, D. M. Angus Mackenzie, L. K. Tschammer, F. Pizzocchero, K. Almdal, P. Boggild. Nano Res. 2014, 7, 743–754.

    Google Scholar 

  44. F. Yavari, Z. Chen, A. V. Thomas, W. Ren, H. M. Cheng, N. Koratkar. Sci Rep. 2011, 1, 166.

    Google Scholar 

  45. S. Park, R. S. Ruoff. Nat Nanotechnol. 2009, 4, 217–224.

    Google Scholar 

  46. S. Gilje, S. Han, M. S. Wang, K. L. Wang, R. B. Kaner. Nano Lett. 2007, 7, 3394–3398.

    Google Scholar 

  47. W. Gao, L. B. Alemary, L. Gi, P. M. Ajayan. Nature Chem. 2009, 1, 403–408.

    Google Scholar 

  48. M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff. Nano Lett. 2008, 8, 3498–3502.

    Google Scholar 

  49. K. K. Sadasivuni, D. Ponnamma, S. Thomas, Y. Grohens. Prog in Poly Sci. 2014, 39, 749–780.

    Google Scholar 

  50. J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, P. E. Sheehan. Nano lett. 2008, 8, 3137–3140.

    Google Scholar 

  51. S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, S. Santucci, L. Ottaviano. J . Phys. Chem. C, 2013, 117, 10683–10690.

    Google Scholar 

  52. J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, B. H. Weiller. ACS Nano 2009, 3, 301–306.

    Google Scholar 

  53. V. Dua, S. P. Surwade, S. Ammu, S. R. Agnihotra, S. Jain, K. E. Roberts, S. Park, R. S. Ruoff, S. K. Manohar. Angew. Chem. Int. Ed. 2010, 49, 2154−2157.

    Google Scholar 

  54. H. Song, L. Zhang, C. He, Y. Qu, Y. Tian, Y. Lv. J Mater Chem 2011, 21, 5972–5977.

    Google Scholar 

  55. A. Zöpfl, M. M. Lemberger, M. König, G. Ruhl,  F. M. Matysik, T. Hirsch. Faraday Discuss., 2014, DOI: 10.1039/C4FD00086B.

  56. D. Ponnamma, K. K. Sadasivuni, M. Strankowski, Q. Guo, S. Thomas. Soft Matter, 2013, 9, 10343.

    Google Scholar 

  57. M. Gautam, A. H. Jayatissa. Solid State Electron 2012, 78,159–165.

    Google Scholar 

  58. H. Vedala, D. C. Sorescu, G. P. Kotchey, A. Star. Nano Lett. 2011, 11, 2342–2347.

    Google Scholar 

  59. J. L. Johnson, A. Behnam, S. J. Pearton and A. Ural. Adv. Mater., 2010, 22, 4877.

    Google Scholar 

  60. T. T. Tung, M. Castro, T. Y. Kim, K. S. Suh, J. F. Feller. Anal Bioanal Chem 2014 406, 3995–4004.

    Google Scholar 

  61. A. Gutes, B. Hsia, A. Sussman, W. Mickelson, A. Zettl, C. Carraro, R. Maboudian. Nanoscale, 2012, 4, 438–440.

    Google Scholar 

  62. V. V. Quang, N. V. Dung, N. S. Trong, N. D. Hoa, N. V. Duy, N. V. Hieu. Appl. Phys. Lett. 2014, 105, 013107.

    Google Scholar 

  63. L. Zhou, F. Shen, X. Tian, D. Wang, T. Zhang, W. Chen. Nanoscale 2013, 5, 1564.

    Google Scholar 

  64. Y. Wang, L. Zhang, N. Hu, Y. Wang, Y. Zhang, Z. Zhou, Y. Liu, S. Shen, C. Peng. Naoscale Research Letters 2014, 9:251.

    Google Scholar 

  65. P. A. Russo, N. Donato, S. G. Leonardi, S. Baek, D. E. Conte, G. Neri, N. Pinna. Angew. Chem., Int. Ed., 2012, 51, 11053.

    Google Scholar 

  66. W. Yuan, A. Liu, L. Huang, C. Li, G. Shi. Adv. Mater. 2013, 25, 766–771.

    Google Scholar 

  67. Y. Lu, B. R. Goldsmith, N. J. Kybert, A. T. C. Johnson. Appl. Phys. Lett. 2010, 97, 083107.

    Google Scholar 

  68. J. Janata,M. Josowicz. Nat. Mater. 2003, 2, 19.

    Google Scholar 

  69. H. Bai, G. Shi. Sensors 2007, 7, 267.

    Google Scholar 

  70. S. Virji, J. X. Huang, R. B. Kaner, B. H. Weiller. Nano Lett. 2004, 4, 491.

    Google Scholar 

  71. P. Hui, Z. Lijuan, C. Soeller, J. Travas-Sejdic. Biomaterials 2009, 30, 2132.

    Google Scholar 

  72. K. Arshak, V. Velusamy, O. Korostynska, K. Oliwa-Stasiak, C. Adley. IEEE Sensors J. 2005, 9, 1942.

    Google Scholar 

  73. J. Jang, M. Chang, H. Yoon. Adv. Mater. 2005, 17, 1616.

    Google Scholar 

  74. H. Yoon, M. Chang, J. Jang. Adv. Funct. Mater. 2007, 17, 431.

    Google Scholar 

  75. H. S. Yoon. Nanomaterials 2013, 3, 524–549.

    Google Scholar 

  76. C. M. Hangarter, M. Bangar, A. Mulchandani, N. V. Myung. J Mater Chem 2010,20,3131–3140.

    Google Scholar 

  77. S. J. Park, O. S. Kwon, J. E. Lee, J. S. Jang , H. S. Yoon. Sensors 2014, 14, 3604–3630.

    Google Scholar 

  78. L. Al-Mashat, K. Shin, K. Kalantar-zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. L. Gou, S. J. Ippolito, W. Wlodarski. J. Phys. Chem. C 2010, 114, 16168–16173.

    Google Scholar 

  79. Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, B. Liu. Sens. Actuators B 2013, 178, 485–493.

    Google Scholar 

  80. W. K. Jang, J. Yun, H. I. Kim, Y. S. Lee. Colloid Polym Sci 2013, 291, 1095–1103.

    Google Scholar 

  81. N. Hu, Z. Yang, Y. Wang, L. Zhang, Y. Wang, X. Huang, H. Wei, L. Wei, Y. Zhang. Nanotechnology 2014, 25, 025502.

    Google Scholar 

  82. H. Bai, K. X. Sheng, P. F. Zhang, C. Li, G. Q. Shi. J. Mater. Chem. 2011, 21, 18653–18658.

    Google Scholar 

  83. T. T. Tung, M. Castro, T. Y. Kim, K. S. Suh, J. F. Feller. J. Mater. Chem. 2012, 22, 21754–21766.

    Google Scholar 

  84. T. T. Tung, M. Castro, J. F. Feller, T. Y. Kim, K.S. Suh. Org. Electro. 2013, 14, 2789–279472.

    Google Scholar 

  85. T. T. Tung, M. Castro, I. Pillin, T. Y. Kim, K. S. Suh, J. F. Feller. Carbon 2014, 74, 104–112.

    Google Scholar 

  86. Y. Dan, Y. Lu, N. J. Kybert, Z. Luo, A. T. C. Johnson. Nano let. 2009, 9, 1472–1475.

    Google Scholar 

  87. L. Zhang, C. Li, A. Liu, G. Q. Shi. J. Mater. Chem. 2012, 22, 8438–8443.

    Google Scholar 

  88. R. K. Paul, S. Badhulika, N. M. Saucedo, A. Mulchandani. Anal. Chem. 2012, 84, 8171–8178.

    Google Scholar 

  89. N. T. Hu , Y. Y. Wang, J. Chai, R. G. Gao, Z. Yang, E. S. W. Kong, Y. F. Zhang. Sensors and Actuators B 2012, 163,107–114.

    Google Scholar 

  90. Q. M. Ji, I. Honma, S. M. Paek, M. Akada, J. P. Hill, A. Vinu, K. Arig. Angew. Chem. Int. Ed. 2010, 49, 9737–9739.

    Google Scholar 

  91. X. Wang, X. Sun, P. A. Hu, J. Zhang, L. Wang, W. Feng, S. B. Lei, Bi.Yang, and W. W. Cao. Adv. Funct. Mater. 2013, 23, 6044–6050.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Thanh Tung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Thanh Tung, T., Castro, M., Feller, J.F., Kim, T.Y. (2015). Graphene Filled Polymers for Vapor/Gas Sensor Applications. In: Sadasivuni, K., Ponnamma, D., Kim, J., Thomas, S. (eds) Graphene-Based Polymer Nanocomposites in Electronics. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13875-6_10

Download citation

Publish with us

Policies and ethics