Skip to main content

The Einstein–de Haas Effect and Its Application to Spin-Driven Molecular Motors

  • Conference paper
  • First Online:
  • 992 Accesses

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

Abstract

When the angular momentum of spin is converted into that of lattice, it gives a mechanical torque for rotation to the system, which is known as the Einstein–de Haas effect. Here, we propose to utilize this principle to create spin-driven molecular motors. Despite the fundamental challenge due to a small driving torque, the mechanism is potentially important in terms of nanotechnology and spintronics. We consider the required conditions for the rotational motion using a classical resonator model as the first step toward its future realization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kottas, G.S., Clarke, L.I., Horinek, D., Michl, J.: Artificial molecular rotors. Chem. Rev. 105(4), 1281–1376 (2005)

    Article  CAS  Google Scholar 

  2. Schliwa, M., Woehlke, G.: Molecular motors. Nature 422(6933), 759–765 (2003)

    Article  CAS  Google Scholar 

  3. van den Heuvel, M.G.L., Dekker, C.: Motor proteins at work for nanotechnology. Science 317(5836), 333–336 (2007)

    Article  Google Scholar 

  4. Balzani, V., Credi, A., Raymo, F., Stoddart, J.F.: Artificial molecular machines. Angew. Chem. Int. 39(19), 3348–3391 (2000)

    Article  CAS  Google Scholar 

  5. Browne, W.R., Feringa, B.L.: Making molecular machines work. Nat. Nanotechnol. 1, 25–35 (2006)

    Article  CAS  Google Scholar 

  6. Kay, E., Leigh, D., Zerbetto, F.: Synthetic molecular motors and mechanical machines. Angew. Chem. Int. 46(1–2), 72–191 (2007)

    CAS  Google Scholar 

  7. Gimzewski, J.K., Joachim, C.: Nanoscale science of single molecules using local probes. Science 283(5408), 1683–1688 (1999)

    Article  CAS  Google Scholar 

  8. Reimann, P., Hänggi, P.: Introduction to the physics of Brownian motors. Appl. Phys. A 75(2), 169–178 (2002)

    Article  CAS  Google Scholar 

  9. Ait-Haddou, R., Herzog, W.: Brownian ratchet models of molecular motors. Cell Biochem. Biophys. 38(2), 191–213 (2003)

    Article  CAS  Google Scholar 

  10. Astumian, R.D.: Thermodynamics and Kinetics of a Brownian motor. Science 276(5314), 917–922 (1997)

    Article  CAS  Google Scholar 

  11. Einstein, A., de Haas, W.J.: Experimenteller Nachweis der Ampereschen Molekularstrme. Verh. Dtsch. Phys. Ges. 17, 152–170 (1915)

    Google Scholar 

  12. Richardson, O.W.: A mechanical effect accompanying magnetization. Phys. Rev. (Series I) 26(3), 248–253 (1908)

    Article  Google Scholar 

  13. Ono, T., Kohno, H.: Spin-transfer motor. J. Magn. Soc. Jpn. 31, 305 (2007)

    Article  Google Scholar 

  14. Kovalev, A.A., Bauer, G.E.W., Brataas, A.: Current-driven ferromagnetic resonance, mechanical torques, and rotary motion in magnetic nanostructures. Phys. Rev. B 75, 014430 (2007)

    Article  Google Scholar 

  15. Zolfagharkhani, G., Gaidarzhy, A., Degiovanni, P., Kettemann, S., Fulde, P., Mohanty, P.: Nanomechanical detection of itinerant electron spin flip. Nat. Nanotechnol. 3(12), 720–723 (2008)

    Article  CAS  Google Scholar 

  16. Mohanty, P., Zolfagharkhani, G., Kettemann, S., Fulde, P.: Spin-mechanical device for detection and control of spin current by nanomechanical torque. Phys. Rev. B 70(19), 195301 (2004)

    Article  Google Scholar 

  17. Tomonaga S: The Story of Spin. University of Chicago Press, Chicago (1997)

    Google Scholar 

  18. Ya, F.V.: On the history of the Einstein-de Haas effect. Sov. Phys. Usp. 22(7), 580 (1979)

    Article  Google Scholar 

  19. Berger, L.: Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films. J. Appl. Phys. 55(6), 1954–1956 (1984)

    Article  CAS  Google Scholar 

  20. Yamaguchi, A., Ono, T., Nasu, S., Miyake, K., Mibu, K., Shinjo, T.: Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys. Rev. Lett. 92(7), 077205 (2004)

    Article  CAS  Google Scholar 

  21. Ando, K., Fujita, S., Ito, J., Yuasa, S., Suzuki, Y., Nakatani, Y., Miyazaki, T., Yoda, H.: Spin-transfer torque magnetoresistive random-access memory technologies for normally off computing (invited). J. Appl. Phys. 115(17), 172607 (2014)

    Article  Google Scholar 

  22. Tatara, G., Kohno, H.: Theory of current-driven domain wall motion: spin transfer versus momentum transfer. Phys. Rev. Lett. 92(8), 086601 (2004)

    Article  Google Scholar 

  23. Koyama, T., Chiba, D., Ueda, K., Kondou, K., Tanigawa, H., Fukami, S., Suzuki, T., Ohshima, N., Ishiwata, N., Nakatani, Y., Kobayashi, K., Ono, T.: Observation of the intrinsic pinning of a magnetic domain wall in a ferromagnetic nanowire. Nat. Mater. 10(3), 194–197 (2011)

    Article  CAS  Google Scholar 

  24. Stipe, B.C., Rezaei, M.A., Ho, W.: Inducing and viewing the rotational motion of a single molecule. Science 279(5358), 1907–1909 (1998)

    Article  CAS  Google Scholar 

  25. Stipe, B.C., Rezaei, M.A., Ho, W.: Coupling of vibrational excitation to the rotational motion of a single adsorbed molecule. Phys. Rev. Lett. 81(6), 1263–1266 (1998)

    Article  CAS  Google Scholar 

  26. Kudernac, T., Ruangsupapichat, N., Parschau, M., Macia, B., Katsonis, N., Harutyunyan, S.R., Ernst, K.H., Feringa, B.L.: Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479(7372), 208–211 (2011)

    Article  CAS  Google Scholar 

  27. Tierney, H.L., Murphy, C.J., Jewell, A.D., Baber, A.E., Iski, E.V., Khodaverdian, H.Y., McGuire, A.F., Klebanov, N., Sykes, E.C.H.: Experimental demonstration of a single-molecule electric motor. Nat. Nanotechnol. 6(10), 625–629 (2011)

    Article  CAS  Google Scholar 

  28. Perera, U.G.E., Ample, F., Kersell, H., Zhang, J., Vives, G., Echeverria, J., Grisolia, M., Rapenne, G., Joachim, C., Hla, S.W.: Controlled clockwise and anticlockwise rotational switching of a molecular motor. Nat. Nanotechnol. 8, 46–51 (2013)

    Article  CAS  Google Scholar 

  29. Tamar, S.: Current-driven dynamics in molecular-scale devices. J. Phys.: Condens. Matter 15(14), R521 (2003)

    Google Scholar 

  30. Delsing, P., Likharev, K.K., Kuzmin, L.S., Claeson, T.: Time-correlated single-electron tunneling in one-dimensional arrays of ultrasmall tunnel junctions. Phys. Rev. Lett. 63(17), 1861–1864 (1989)

    Article  Google Scholar 

  31. Nakamura, Y., Pashkin, Y.A., Tsai, J.S.: Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398(6730), 786–788 (1999)

    Article  CAS  Google Scholar 

  32. Saunus, C., Bindel, J.R., Pratzer, M., Morgenstern, M.: Versatile scanning tunneling microscopy with 120 ps time resolution. Appl. Phys. Lett. 102(5), 051601 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Uchihashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Uchihashi, T., Ono, T. (2015). The Einstein–de Haas Effect and Its Application to Spin-Driven Molecular Motors. In: Joachim, C., Rapenne, G. (eds) Single Molecular Machines and Motors. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-13872-5_6

Download citation

Publish with us

Policies and ethics