Recent Advances in the Chemical Synthesis of Lasso Molecular Switches

Conference paper
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)


Interlocked and interwoven molecules are intriguing structures that can behave as molecular machines. Among them, the [1]rotaxane molecular architecture is unique, since it defines a lasso-type shape, that, if well designed, can be tightened or loosened depending on an external stimulus. This chapter describes an overview of the main strategies used to reach [1]rotaxanes to date and then focuses on the few examples of [1]rotaxanes reported in the literature that behave as mono-lasso or double-lasso molecular machines. Different motions are illustrated like the loosening–tightening of lassos or the controllable molecular “jump rope” movement which is specific to the double-lasso structure.


Molecular machine [1]Rotaxane Lasso Double-lasso Jump rope Lasso peptides 


  1. 1.
    Kay, E.R., Leigh, D.A., Zerbetto, F.: Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007)CrossRefGoogle Scholar
  2. 2.
    Balzani, V., Ceroni, P., Credi, A., Gomez-Lopez, M., Hamers, C., Stoddart, J.F., Wolf, R.: Controlled dethreading/rethreading of a scorpion-like pseudorotaxane and a related macrobicyclic self-complexing system. New J. Chem. 25, 25–31 (2001)CrossRefGoogle Scholar
  3. 3.
    Yamauchi, K., Miyawaki, A., Takashima, Y., Yamaguchi, H., Harada, A.: Switching from altro-α-cyclodextrin dimer to pseudo [1]rotaxane dimer through tumbling. Org. Lett. 12, 1284–1286 (2010)CrossRefGoogle Scholar
  4. 4.
    Yamauchi, K., Miyawaki, A., Takashima, Y., Yamaguchi, H., Harada, A.: A molecular reel: shuttling of a rotor by tumbling of a macrocycle. J. Org. Chem. 75, 1040–1046 (2010)CrossRefGoogle Scholar
  5. 5.
    Ashton, P.R., Ballardini, R., Balzani, V., Boyd, S.E., Credi, A., Gandolfi, M.T., Gomez-Lopez, M., Iqbal, S., Philp, D., Preece, J.A., Prodi, L., Ricketts, H.G., Stoddart, J.F., Tolley, M.S., Venturi, M., White, A.J.P., Williams, D.J.: Simple mechanical molecular and supramolecular machines: photochemical and electrochemical control of switching processes. Chem. Eur. J. 3, 152–170 (1997)CrossRefGoogle Scholar
  6. 6.
    Strutt, N.L., Zhang, H., Giesener, M.A., Lei, J., Stoddart, J.F.: A self-complexing and self-assembling pillar[5]arene. Chem. Commun. 48, 1647–1649 (2012)CrossRefGoogle Scholar
  7. 7.
    Legros V., Vanhaverbeke C., Souard F., Len C., Désiré J.: β-cyclodextrin-glycerol dimers: synthesis and NMR conformational analysis. Eur. J. Org. Chem. 2013, 2583–2590 (2013)Google Scholar
  8. 8.
    Liu, Y., Yang, Z.-X., Chen, Y.: Synthesis and self-assembly behaviors of the azobenzenyl modified β-cyclodextrins isomers. J. Org. Chem. 73, 5298–5304 (2008)CrossRefGoogle Scholar
  9. 9.
    Miyawaki, A., Kuad, P., Takashima, Y., Yamaguchi, H., Harada, A.: Molecular puzzle ring: pseudo[1]rotaxane from a flexible cyclodextrin derivative. J. Am. Chem. Soc. 130, 17062–17069 (2008)CrossRefGoogle Scholar
  10. 10.
    Hiratani, K., Kaneyama, M., Nagawa, Y., Koyama, E., Kanesato, M.: Synthesis of [1]rotaxane via covalent bond formation and its unique fluorescent response by energy transfer in the presence of lithium ion. J. Am. Chem. Soc. 126, 13568–13569 (2004)CrossRefGoogle Scholar
  11. 11.
    Franchi, P., Fani, M., Mezzina, E., Lucarini, M.: Increasing the persistency of stable free-radicals: synthesis and characterization of a nitroxide based [1]rotaxane. Org. Lett. 10, 1901–1904 (2008)CrossRefGoogle Scholar
  12. 12.
    Ma, X., Wang, Q., Tian, H.: Disparate orientation of [1]rotaxanes. Tetrahedron Lett. 48, 7112–7116 (2007)CrossRefGoogle Scholar
  13. 13.
    Zhu, L., Yan, H., Zhao, Y.: Cyclodextrin-based [1]rotaxanes on gold nanoparticles. Int. J. Mol. Sci. 13, 10132–10142 (2012)CrossRefGoogle Scholar
  14. 14.
    Tsuda, S., Terao, J., Kambe, N.: Synthesis of an organic-soluble π-conjugated [1]rotaxane. Chem. Lett. 38, 76–77 (2009)CrossRefGoogle Scholar
  15. 15.
    Rowan, S.J., Cantrill, S.J., Stoddart, J.F., White, A.J.P., Williams, D.J.: Toward daisy chain polymers: “Wittig exchange” of stoppers in [2]rotaxane monomers. Org. Lett. 2, 759–762 (2000)CrossRefGoogle Scholar
  16. 16.
    Xue, Z., Mayer, M.F.: Actuator prototype: capture and release of a self-entangled [1]rotaxane. J. Am. Chem. Soc. 132, 3274–3276 (2010)CrossRefGoogle Scholar
  17. 17.
    Gibson, H.W., Lee, S.-H., Engen, P.T., Lecavalier, P., Sze, J., Shen, Y.X., Bheda, M.: New triarylmethyl derivatives: “blocking groups” for rotaxanes and polyrotaxanes. J. Org. Chem. 58, 3748–3756 (1993)CrossRefGoogle Scholar
  18. 18.
    Jiménez, M.C., Dietrich-Buchecker, C., Sauvage, J.-P.: Towards synthetic molecular muscles: contraction and stretching of a linear rotaxane dimer. Angew. Chem. Int. Ed. 39, 3284–3287 (2000)CrossRefGoogle Scholar
  19. 19.
    Jimenez-Molero, M.C., Dietrich-Buchecker, C., Sauvage, J.-P.: Chemically induced contraction and stretching of a linear rotaxane dimer. Chem. Eur. J. 8, 1456–1466 (2002)CrossRefGoogle Scholar
  20. 20.
    Dietrich-Buchecker, C., Sauvage, J.-P., Kern, J.-M.: Templated synthesis of interlocked macrocyclic ligands: the catenands. J. Am. Chem. Soc. 106, 3043–3045 (1984)CrossRefGoogle Scholar
  21. 21.
    Onagi, H., Blake, C.J., Easton, C.J., Lincoln, S.F.: Installation of a ratchet tooth and pawl to restrict rotation in a cyclodextrin rotaxane. Chem. Eur. J. 9, 5978–5988 (2003)CrossRefGoogle Scholar
  22. 22.
    Okuno, E., Hiraoka, S., Shionoya, M.: A synthetic approach to a molecular crank mechanism: toward intramolecular motion transformation between rotation and translation. Dalton Trans. 39, 4107–4116 (2010)CrossRefGoogle Scholar
  23. 23.
    Ma, X., Qu, D., Ji, F., Wang, Q., Zhu, L., Xu, Y., Tian, H.: A light-driven [1]rotaxane via self-complementary and Suzuki-coupling capping. Chem. Commun. 1409–1411 (2007)Google Scholar
  24. 24.
    Gao, C., Ma, X., Zhang, Q., Wang, Q., Qu, D., Tian, H.: A light-powered stretch-contraction supramolecular system based on cobalt coordinated [1]rotaxane. Org. Biomol. Chem. 9, 1126–1132 (2011)CrossRefGoogle Scholar
  25. 25.
    Coutrot, F., Busseron, E.: A new glycorotaxane molecular machine based on an anilinium and a triazolium station. Chem. Eur. J. 14, 4784–4787 (2008)CrossRefGoogle Scholar
  26. 26.
    Chao, S., Romuald, C., Fournel-Marotte, K., Clavel, C., Coutrot, F.: A strategy utilizing a recyclable macrocycle transporter for the efficient synthesis of a triazolium-based [2]rotaxane. Angew. Chem. Int. Ed. 53, 6914–6919 (2014)Google Scholar
  27. 27.
    Li, H., Zhang, H., Zhang, Q., Zhang, Q.-W., Qu, D.: A switchable ferrocene-based [1]rotaxane with an electrochemical signal output. Org. Lett. 14, 5900–5903 (2012)CrossRefGoogle Scholar
  28. 28.
    Li, H., Zhang, J.-N., Zhou, W., Zhang, H., Zhang, Q., Qu, D., Tian, H.: Dual-mode operation of a bistable [1]rotaxane with a fluorescent signal. Org. Lett. 15, 3070–3073 (2013)CrossRefGoogle Scholar
  29. 29.
    Chatterjee, M.N., Kay, E.R., Leigh, D.A.: Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. J. Am. Chem. Soc. 128, 4058–4073 (2006)CrossRefGoogle Scholar
  30. 30.
    Alvarez-Pérez, M., Goldup, S.M., Leigh, D.A., Slawin, M.Z.: A chemically-driven molecular information ratchet. J. Am. Chem. Soc. 130, 1836–1838 (2008)CrossRefGoogle Scholar
  31. 31.
    Carlone, A., Goldup, S.M., Lebrasseur, N., Leigh, D.A., Wilson, A.: A three-compartment chemically-driven molecular information ratchet. J. Am. Chem. Soc. 134, 8321–8323 (2012)CrossRefGoogle Scholar
  32. 32.
    Kay, E.R., Leigh, D.A.: Beyond switches: rotaxane- and catenane-based synthetic molecular motors. Pure Appl. Chem. 80, 17–29 (2012)Google Scholar
  33. 33.
    Leigh, D.A., Zerbetto, F., Kay, E.R.: Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007)CrossRefGoogle Scholar
  34. 34.
    Busseron, E., Coutrot, F.: N-benzyltriazolium as both molecular station and barrier in [2]rotaxane molecular machines. J. Org. Chem. 78, 4099–4106 (2013)CrossRefGoogle Scholar
  35. 35.
    Clavel, C., Romuald, C., Brabet, E., Coutrot, F.: A pH-sensitive lasso-based rotaxane molecular switch. Chem. Eur. J. 19, 2982–2989 (2013)CrossRefGoogle Scholar
  36. 36.
    Coutrot, F., Busseron, E., Montero, J.-L.: A very efficient synthesis of a mannosyl orthoester [2]rotaxane and mannosidic [2]rotaxanes. Org. Lett. 10, 753–757 (2008)CrossRefGoogle Scholar
  37. 37.
    Clavel, C., Fournel-Marotte, K., Coutrot, F.: A pH sensitive peptide-containing lasso molecular switch. Molecules 18, 11553–11575 (2013)CrossRefGoogle Scholar
  38. 38.
    Romuald, C., Cazals, G., Enjalbal, C., Coutrot, F.: Straightforward synthesis of a double-lasso macrocycle from a nonsymmetrical [c2]daisy chain. Org. Lett. 15, 184–187 (2013)CrossRefGoogle Scholar
  39. 39.
    Romuald, C., Arda, A., Clavel, C., Jiménez-Barbero, J., Coutrot, F.: Tightening or loosening a pH-sensitive double-lasso molecular machine readily synthesized from an ends-activated [c2]daisy chain. Chem. Sci. 3, 1851–1857 (2012)CrossRefGoogle Scholar
  40. 40.
    Rotzler J., Mayor M. (2013) Molecular daisy chains. Chem. Soc. Rev. 42, 44–62Google Scholar
  41. 41.
    Coutrot, F., Romuald, C., Busseron, E.: A new dimannosyl[c2]daisy chain molecular machine. Org. Lett. 10, 3741–3744 (2008)CrossRefGoogle Scholar
  42. 42.
    Romuald, C., Busseron, E., Coutrot, F.: Very contracted to extended co-conformations with or without oscillations in two- and three-station [c2]daisy chains. J. Org. Chem. 75, 6516–6531 (2010)CrossRefGoogle Scholar
  43. 43.
    Romuald, C.: Des muscles moléculaires dans tous leurs états aux noeuds moléculaires à cavité modulable inédite. Thesis, University of Montpellier 2, Montpellier (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Supramolecular Machines and Architectures Team, Institut des Biomolécules Max Mousseron, (IBMM) UMR 5247 CNRS-UM1-UM2Université Montpellier 2Montpellier Cedex 5France

Personalised recommendations