Skip to main content

Single-Molecule Measurements of Synthetic Molecular Machines at Work

  • Conference paper
  • First Online:
Single Molecular Machines and Motors

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

  • 888 Accesses

Abstract

Molecular motors are ubiquitous in nature and are essential in controlling and performing numerous biological functions. They are able to rectify random motion to generate directional force and carry out macroscopic tasks (Schliwa in Molecular motors. Wiley-VCH, Weinheim, 2003 [1]). This ability has inspired attempts to create synthetic machines exhibiting control over rotary or linear motion (Kinbara and Aida in Chem Rev 105:1377–1400, 2005 [2], Kay et al. in Angew Chem Int Ed 46:72–191, 2007 [3]). Whereas some examples of synthetic systems able to use biased Brownian motion to perform work and collectively induce movement of much larger objects have been reported (Kay et al. in Angew Chem Int Ed 46:72–191, 2007 [3], Browne and Feringa in Nat Nanotech 1:25–35, 2006 [4], Berná et al. in Nat Mater 4:704–710, 2005 [5]), seeing such a single molecule at work remains a major challenge. Some elegant experiments on single-molecule machines adsorbed on a surface, imaged and manipulated with the tip of a scanning tunnelling microscope have been realized (Grill et al. in Nat Nanotech 2:95–98, 2007 [6], Manzano et al. in Nat Mater 8:576–579, 2009 [7]). However, in this case, the molecule is adsorbed on the surface, and the experiments are done in ultra-high vacuum at low temperature, which can be a limitation for systems designed to perform work in solution at room temperature or even in physiological conditions. Here, we discuss how a single synthetic small machine at work can be addressed by AFM-based single-molecule force spectroscopy, a tool able to monitor mechanical forces with sub-nanometer resolution and which has been widely used to investigate molecular-level processes in macromolecules and biological machines (Bustamante et al. in Annu Rev Biochem 73:705–748, 2004 [8], Special Issue in Annu Rev Biochem 77:45–228, 2008 [9], Evans in Annu Rev Biophys Biomol Struct 30:105–128, 2001 [10], Liang and Fernández in ACS Nano 3:1628–1645, 2009 [11], Puchner and Gaub in Curr Opin Struct Biol 19:605–614, 2009 [12]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schliwa, M.: Molecular Motors. Wiley-VCH, Weinheim (2003)

    Google Scholar 

  2. Kinbara, K., Aida, T.: Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105, 1377–1400 (2005)

    Article  CAS  Google Scholar 

  3. Kay, E.R., Leigh, D.A., Zerbetto, F.: Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007)

    Article  CAS  Google Scholar 

  4. Browne, W., Feringa, B.L.: Making molecular machines work. Nat. Nanotech. 1, 25–35 (2006)

    Article  CAS  Google Scholar 

  5. Berná, J., et al.: Macroscopic transport by synthetic molecular machines. Nat. Mater. 4, 704–710 (2005)

    Article  Google Scholar 

  6. Grill, L., Rieder, K.-H., Moresco, F., Rapenne, G., Stojkovic, S., Bouju, X., Joachim, C.: Rolling a single molecular wheel at the atomic scale. Nat. Nanotech. 2, 95–98 (2007)

    Article  CAS  Google Scholar 

  7. Manzano, C., Soe, W.H., Wong, H.S., Ample, F., Gourdon, A., Joachim, C.: Step-by-step rotation of a molecule-gear mounted on an atomic-scale axis. Nat. Mater. 8, 576–579 (2009)

    Google Scholar 

  8. Bustamante, C., Chemla, Y.R., Forde, N.R., Izhaky, D.: Mechanical processes in biochemistry. Annu. Rev. Biochem. 73, 705–748 (2004)

    Article  CAS  Google Scholar 

  9. Special Issue. Annu. Rev. Biochem. 77, 45–228 (2008)

    Google Scholar 

  10. Evans, E.: Probing the relation between force–lifetime–and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001)

    Article  CAS  Google Scholar 

  11. Liang, J., Fernández, J.M.: Mechanochemistry: one bond at a time. ACS Nano 3, 1628–1645 (2009)

    Article  CAS  Google Scholar 

  12. Puchner, E.M., Gaub, H.E.: Force and function: probing proteins with AFM-based force spectroscopy. Curr. Opin. Struct. Biol. 19, 605–614 (2009)

    Article  CAS  Google Scholar 

  13. Eelkema, R., et al.: Molecular machines: nanomotor rotates microscale objects. Nature 440, 163 (2006)

    Article  CAS  Google Scholar 

  14. Liu, Y., et al.: Linear artificial molecular muscles. J. Am. Chem. Soc. 127, 9745–9759 (2005)

    Article  CAS  Google Scholar 

  15. Panman, M.R., et al.: Operation mechanism of a molecular machine revealed using time-resolved vibrational spectroscopy. Science 328, 1255–1258 (2010)

    Article  CAS  Google Scholar 

  16. Rijs, A.M., et al.: Controlled hydrogen-bond breaking in a rotaxane by discrete solvation. Angew. Chem. Int. Ed. 49, 3896–3900 (2010)

    Article  CAS  Google Scholar 

  17. Janke, M., et al.: Mechanically interlocked calix[4]arene dimers display reversible bond breakage under force. Nat. Nanotech. 4, 225–229 (2009)

    Article  CAS  Google Scholar 

  18. Brough, B., Northrop, B.H., Schmidt, J.J., Tseng, H.R., Houk, K.N., Stoddart, J.F., Ho, C.M.: Evaluation of synthetic linear motor-molecule actuation energetics. Proc. Nat. Acad. Sci. USA 103, 8583–8588 (2006)

    Article  CAS  Google Scholar 

  19. Lussis, P., Svaldo-Lanero, T., Bertocco, A., Fustin, C.-A., Leigh, D.A., Duwez, A.-S.: A single synthetic small molecule that generates force against a load. Nat. Nanotech. 6, 553–557 (2011)

    Article  CAS  Google Scholar 

  20. Hugel, T., et al.: Single-molecule optomechanical cycle. Science 296, 1103–1106 (2002)

    Article  Google Scholar 

  21. Shi, W., Giannotti, M.I., Zhang, X., Hempenius, M.A., Schönherr, H., Vancso, G.J.: Closed mechanoelectrochemical cycles of individual single-chain macromolecular motors by AFM. Angew. Chem. Int. Ed. 46, 8400–8404 (2007)

    Article  CAS  Google Scholar 

  22. Altieri, A., et al.: Remarkable positional discrimination in bistable light- and heat-switchable hydrogen-bonded molecular shuttles. Angew. Chem. Int. Ed. 42, 2296–2300 (2003)

    Article  CAS  Google Scholar 

  23. Hunter, C.A.: Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angew. Chem. Int. Ed. 43, 5310–5324 (2004)

    Article  CAS  Google Scholar 

  24. Crooks, G.E.: Entropy production fluctuation theorem and the nonequilibrium work relation for free-energy differences. Phys. Rev. E 60, 2721–2726 (1999)

    Article  CAS  Google Scholar 

  25. Collin, C., Ritort, F., Jarzynski, C., Smith, S.B., Tinoco Jr, I., Bustamante, C.: Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437, 231–234 (2005)

    Article  CAS  Google Scholar 

  26. Leigh, D.A., Wong, J.K.Y., Dehez, F., Zerbetto, F.: Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003)

    Article  CAS  Google Scholar 

  27. Kay, E.R., Leigh, D.A.: Hydrogen bond-assembled synthetic molecular motors and machines. Top. Curr. Chem. 262, 133–177 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Duwez, AS. (2015). Single-Molecule Measurements of Synthetic Molecular Machines at Work. In: Joachim, C., Rapenne, G. (eds) Single Molecular Machines and Motors. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-13872-5_1

Download citation

Publish with us

Policies and ethics