Characteristically Simple Beauville Groups, II: Low Rank and Sporadic Groups

  • Gareth A. JonesEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 123)


A Beauville surface is a rigid complex surface of general type, isogenous to a higher product by the free action of a finite group, called a Beauville group. Here we consider which characteristically simple groups can be Beauville groups. We show that if \(G\) is a cartesian power of a simple group \(L_2(q)\), \(L_3(q)\), \(U_3(q)\), \(Sz(2^e)\), \(R(3^e)\), or of a sporadic simple group, then \(G\) is a Beauville group if and only if it has two generators and is not isomorphic to \(A_5\).

MSC classification:

20B25 (primary) 14J50 20G40 20H10 (secondary) 


  1. 1.
    I. Bauer, F. Catanese, F. Grunewald, Beauville surfaces without real structures I, in Geometric Methods in Algebra and Number Theory. Progress in Mathematics, vol. 235 (Birkhäuser, Boston, 2005), pp. 1–42Google Scholar
  2. 2.
    I. Bauer, F. Catanese, F. Grunewald, Chebycheff and Belyi polynomials, dessins d’enfants, Beauville surfaces and group theory. Mediterr. J. Math. 3, 121–146 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    A. Beauville, Surfaces algébriques complexes, Astérisque 54, Soc. Math. France, (1978)Google Scholar
  4. 4.
    A. Bereczky, Maximal overgroups of Singer elements in classical groups. J. Algebra 234, 187–206 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    D.M. Bloom, The subgroups of \(PSL(3, q)\) for odd \(q\). Trans. Am. Math. Soc. 127, 150–178 (1967)zbMATHGoogle Scholar
  6. 6.
    F. Catanese, Fibred surfaces, varieties isogenous to a product and related moduli spaces. Am. J. Math. 122, 1–44 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    C. Choi, On subgroups of \(M_{24}\). II. The maximal subgroups of \(M_{24}\). Trans. Am. Math. Soc. 167, 29–47 (1972)zbMATHGoogle Scholar
  8. 8.
    J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, ATLAS of Finite Groups (Clarendon Press, Oxford, 1985)zbMATHGoogle Scholar
  9. 9.
    L.E. Dickson, Linear Groups (Dover, New York, 1958)zbMATHGoogle Scholar
  10. 10.
    J.D. Dixon, The probability of generating the symmetric group. Math. Z. 110, 199–205 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    B.T. Fairbairn, K. Magaard, C.W. Parker, Generation of finite simple groups with an application to groups acting on Beauville surfaces. Proc. London Math. Soc. 107(3), 744–798 (2013) doi: 10.1112/plms/pds097
  12. 12.
    F.G. Frobenius, Über Gruppencharaktere, Sitzber. Königlich Preuss. Akad. Wiss. Berlin, pp. 985–1021 (1896)Google Scholar
  13. 13.
    S. Garion, M. Larsen, A. Lubotzky, Beauville surfaces and finite simple groups. J. Reine Angew. Math. 666, 225–243 (2012)zbMATHMathSciNetGoogle Scholar
  14. 14.
    R. Guralnick, G. Malle, Simple groups admit Beauville structures. J. London Math. Soc. 85(2), 694–721 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    P. Hall, The Eulerian functions of a group. Q. J. Math. 7, 134–151 (1936)CrossRefGoogle Scholar
  16. 16.
    R.W. Hartley, Determination of the ternary collineation groups whose coefficients lie in the \(GF(2^n)\). Ann. Math. 27(2), 140–158 (1925)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Z. Janko, A new finite simple group with abelian Sylow subgroups and its characterization. J. Algebra 3, 147–186 (1966)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    G.A. Jones, Enumeration of homomorphisms and surface-coverings. Q. J. Math. 46, 485–507 (1995)CrossRefzbMATHGoogle Scholar
  19. 19.
    G.A. Jones, Beauville surfaces and groups: a survey, in Rigidity and Symmetry, ed. by R. Connelly, A. Weiss and W. Whiteley, Fields Inst. Commun. 70, pp. 205–225 (2014)Google Scholar
  20. 20.
    G.A. Jones, Characteristically simple Beauville groups, I: cartesian powers of alternating groups. in Geometry, Groups and Dynamics, ed. by C.S. Aravinda, W.M. Goldman, et al., Contemp. Math. 639, to appear (2015)Google Scholar
  21. 21.
    W.M. Kantor, Linear groups containing a Singer cycle. J. Algebra 62, 232–234 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    W.M. Kantor, A. Lubotzky, The probability of generating a finite classical group. Geom. Dedicata 36, 67–87 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    P.B. Kleidman, The maximal subgroups of the Chevalley groups \(G_2(q)\) with \(q\) odd, of the Ree groups \({}^2G_2(q)\), and of their automorphism groups. J. Algebra 117, 30–71 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    V.M. Levchuk, Ya. N. Nuzhin, Structure of Ree groups (Russian). Algebra Log. 24, 26–41 (1985)Google Scholar
  25. 25.
    M.W. Liebeck, A. Shalev, The probability of generating a finite simple group. Geom. Dedicata 56, 103–113 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    A.M. Macbeath, Generators of the linear fractional groups, in Number Theory (Houston 1967), ed. by W.J. Leveque, E.G. Straus (Am. Math. Soc., Providence, 1969), pp. 14–32. (Proc. Sympos. Pure Math. 12)Google Scholar
  27. 27.
    H.H. Mitchell, Determination of the ordinary and modular ternary linear groups. Trans. Am. Math. Soc. 12, 207–242 (1911)CrossRefzbMATHGoogle Scholar
  28. 28.
    R. Ree, A family of simple groups associated with the simple Lie algebra of type \((G_2)\). Am. J. Math. 83, 432–462 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    W.A. Simpson, J.S. Frame, The character tables for \(SL(3, q)\), \(SU(3, q^2)\), \(PSL(3, q)\), \(PSU(3, q^2)\). Can. J. Math. 25, 486–494 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    J.-P. Serre, Topics in Galois Theory, 2nd edn., A.K. Peters (Wellesley, 2008)Google Scholar
  31. 31.
    M. Suzuki, On a class of doubly transitive groups. Ann. Math. 75(2), 105–145 (1962)CrossRefzbMATHGoogle Scholar
  32. 32.
    H.N. Ward, On Ree’s series of simple groups. Trans. Am. Math. Soc. 121, 62–89 (1966)zbMATHGoogle Scholar
  33. 33.
    R.A. Wilson, The Finite Simple Groups. Graduate Texts in Mathematics, vol. 251 (Springer, London, 2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of MathematicsUniversity of SouthamptonSouthamptonUK

Personalised recommendations