A Survey of Beauville \(p\)-Groups

  • Nigel BostonEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 123)


This paper describes recent results as to which \(p\)-groups are Beauville, with emphasis on ones of small order (joint with N. Barker and B. Fairbairn) and ones that form inverse systems (joint with N. Barker, N. Peyerimhoff, and A. Vdovina).


Ramification structures p-groups 

2000 Mathematics Subject Classification.

20D15 14J29 14L30 20F05 



I thank my co-authors Nathan Barker, Ben Fairbairn, Norbert Peyerimhoff, and Alina Vdovina for their encouragement and hard work in helping develop this field.


  1. 1.
    N. Barker, N. Boston, B. Fairbairn, A note on Beauville \(p\)-groups. Exp. Math. 21(3), 298–306 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    N. Barker, N. Boston, N. Peyerimhoff, A. Vdovina, New examples of Beauville surfaces. Monatsh. Math. 166(3–4), 319–327 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    N. Barker, N. Boston, N. Peyerimhoff, A. Vdovina, An infinite family of 2-groups with mixed Beauville structures (2013). arXiv:1304.4480
  4. 4.
    N. Barker, N. Boston, N. Peyerimhoff, A. Vdovina, Regular algebraic surfaces, ramification structures, and projective planes, submitted to this volumeGoogle Scholar
  5. 5.
    I.C. Bauer, F. Catanese, F. Grunewald, Beauville surfaces without real structures, in Geometric Methods in Algebra and Number Theory. Progress in Mathematics, vol. 235 (Birkhäuser Boston, 2005)Google Scholar
  6. 6.
    I.C. Bauer, F. Catanese, F. Grunewald, The classification of surfaces with \(p_{g} =q= 0\) isogenous to a product of curves. Pure Appl. Math. Q. 4(2), 547–586 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    W. Bosma, J. Cannon, C. Playoust, The Magma algebra system, I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997)Google Scholar
  8. 8.
    Y. Fuertes, G. González-Diez, A. Jaikin-Zapirain, On Beauville surfaces. Groups Geom. Dyn. 5(1), 107–119 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Y. Fuertes, G.A. Jones, Beauville surfaces and finite groups. J. Algebra 340(1), 13–27 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    J. Howie, On the SQ-universality of \(T(6)\)-groups. Forum Math. 1(3), 251–272 (1989)zbMATHMathSciNetGoogle Scholar
  11. 11.
    E.A. O’Brien, The \(p\)-group generation algorithm. J. Symb. Comput. 9, 677–698 (1990)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of WisconsinMadisonUSA

Personalised recommendations