Beauville Surfaces and Groups pp 15-33 | Cite as

# Regular Algebraic Surfaces, Ramification Structures and Projective Planes

Conference paper

First Online:

- 3 Citations
- 494 Downloads

## Abstract

Regular algebraic surfaces isogenous to a higher product of curves can be obtained from finite groups with ramification structures. We find unmixed ramification structures for finite groups constructed as \(p\)-quotients of particular infinite groups with special presentation related to finite projective planes.

## Keywords

Ramification structures Projective planes p-groups Buildings## 2000 Mathematics Subject Classification:

14L30 20F32 51E24## Notes

### Acknowledgments

We thank Donald Cartwright for the representations and method given in Appendix 2 and helpful correspondences. The first author also wishes to thank Uzi Vishne for useful correspondences.

## References

- 1.N. Barker, N. Boston, N. Peyerimhoff, A. Vdovina, New examples of Beauville surfaces. Monatsh. Math.
**166**(3–4), 319–327 (2012)CrossRefzbMATHMathSciNetGoogle Scholar - 2.N. Barker, N. Boston, N. Peyerimhoff A. Vdovina, An infinite family of 2-groups with mixed Beauville structures. Int. Math. Res. Not. (2014). doi: 10.1093/imrn/rnu045
- 3.S. Barre, Polyédres de rang deux, Thesis ENS Lyon, December (1996). http://web.univ-ubs.fr/lmam/barre/these1.pdf
- 4.I.C. Bauer, F. Catanese F. Grunewald, Beauville surfaces without real structures, in
*Geometric Methods in Algebra and Number Theory*. Progress in Mathematics, vol. 235 (Birkhäuser, Boston, 2005)Google Scholar - 5.I.C. Bauer, F. Catanese, F. Grunewald, The classification of surfaces with \(p_{g} =q= 0\) isogenous to a product of curves. Pure Appl. Math. Q.
**4**(2), 547–586 (2008)CrossRefzbMATHMathSciNetGoogle Scholar - 6.W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symb. Comput.
**24**(3–4), 235–265 (1997)CrossRefzbMATHMathSciNetGoogle Scholar - 7.R.H. Bruck, Quadratic extensions of cyclic planes, in
*Proceedings Symposium in Applied Mathematics*, pp. 15–44 (1960)Google Scholar - 8.D.I. Cartwright, A.M. Mantero, T. Steger, A. Zappa, Groups acting simply transitively on the vertices of a building of type \(\widetilde{A}_{2}\), I. Geom. Dedicata
**47**(2), 143–166 (1993)Google Scholar - 9.D.I. Cartwright, A.M. Mantero, T. Steger, A. Zappa, Groups acting simply transitively on the vertices of a building of type \(\widetilde{A}_{2}\), II. Geom. Dedicata
**47**(2), 167–223 (1993)Google Scholar - 10.F. Catanese, Fibred surfaces, varieties isogenous to a product and related moduli spaces. Am. J. Math.
**122**(1), 1–44 (2000)CrossRefzbMATHMathSciNetGoogle Scholar - 11.M. Edjvet, J. Howie, Star graphs, projective planes and free subgroups in small cancellation groups. Proc. Lond. Math. Soc.
**57**(2), 301–328 (1988)CrossRefzbMATHMathSciNetGoogle Scholar - 12.M. Edjvet, A. Vdovina, On the SQ-universality of groups with special presentations. J. Group Theory
**13**(6), 923–931 (2010)CrossRefzbMATHMathSciNetGoogle Scholar - 13.B. Fairbairn, Some exceptional Beauville structures. J. Group Theory
**15**, 631–639 (2012)CrossRefzbMATHMathSciNetGoogle Scholar - 14.Y. Fuertes, G. González-Diez, On Beauville structures on the groups \(S_n\) and \(A_n\). Math. Z.
**264**, 959–968 (2010)CrossRefzbMATHMathSciNetGoogle Scholar - 15.J. Howie, On the SQ-universality of \(T(6)\)-groups. Forum Math.
**1**(3), 251–272 (1989)zbMATHMathSciNetGoogle Scholar - 16.D.R. Hughes, F.C. Piper,
*Projective Planes*(Springer, New York, 1973)zbMATHGoogle Scholar - 17.I. Ivrissimtzis, N. Peyerimhoff, A. Vdovina, Trivalent expandes and hyperbolic surfaces (2012) arXiv:1202.2304
- 18.S. Immervol, A. Vdovina, Partitions of projective planes and construction of polyhedra, Max-Planck-Institut fur Mathematik, Bonn, Preprint Series 23 (2001)Google Scholar
- 19.A. Lubotzky,
*Discrete Groups, Expanding Graphs and Invariant Measures*(Birkhäuser, Basel, 2010)zbMATHGoogle Scholar - 20.A. Lubotzky, B. Samuels, U. Vishne, Explicit construction of Ramanujan complexes of type \(\widetilde{A}_{d}\). Eur. J. Comb.
**26**(6), 965–993 (2005)CrossRefzbMATHMathSciNetGoogle Scholar - 21.R.C. Lyndon, P.E. Schupp,
*Combinatorial Group Theory, Classics in Mathematics*. Reprint of the 1977 edition (Springer, Berlin, 2001)Google Scholar - 22.N. Peyerimhoff, A. Vdovina, Cayley graph expanders and groups of finite width. J. Pure Appl. Algebra
**215**(11), 2780–2788 (2011)CrossRefzbMATHMathSciNetGoogle Scholar - 23.A. Sarveniazi, Explicit construction of a Ramanujan \((n_1, n_2,\dots, n_{d-1})\)-regular hypergraph. Duke Math. J.
**139**(1), 141–171 (2007)CrossRefzbMATHMathSciNetGoogle Scholar - 24.F. Serrano, Isotrivial fibred surfaces. Ann. Mat. Pura Appl.
**171**(4), 63–81 (1996)CrossRefzbMATHMathSciNetGoogle Scholar

## Copyright information

© Springer International Publishing Switzerland 2015