Advertisement

On Quasi-Étale Quotients of a Product of Two Curves

  • Roberto PignatelliEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 123)

Abstract

A quasi-étale quotient of a product of two curves is the quotient of a product of two curves by the action of a finite group which acts freely out of a finite set of points. A quasi-étale surface is the minimal resolution of the singularities of a quasi-étale quotient. They have been successfully used in the last years by several authors to produce several interesting new examples of surfaces. In this paper we describe the principal results on this class of surfaces, and report the full list of the minimal quasi-étale surfaces of general type with geometric genus equal to the irregularity \({\le }2\).

References

  1. 1.
    M.A. Armstrong, On the fundamental group of an orbit space. Proc. Camb. Philos. Soc. 61, 639–646 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    M.A. Armstrong, The fundamental group of the orbit space of a discontinuous group. Proc. Camb. Philos. Soc. 64, 299–301 (1968)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    W. Barth, C. Peters, A. van de Ven, Compact Complex Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete.3, vol. 4 (Springer, Berlin, 1984), pp. x+304Google Scholar
  4. 4.
    I. Bauer, F. Catanese, Some new surfaces with \( p_g = q=0\). The Fano Conference (University of Torino, Turin, 2004), pp. 123–142Google Scholar
  5. 5.
    I. Bauer, F. Catanese, F. Grunewald, The classification of surfaces with \(p_g=q=0\) isogenous to a product of curves. Pure Appl. Math. Q. 4(2), part 1, 547–586 (2008)Google Scholar
  6. 6.
    I. Bauer, F. Catanese, R. Pignatelli, Surfaces of general type with geometric genus zero: a survey. Complex and Differential Geometry. Springer Proceedings in Mathematics, vol. 8 (2011), pp. 1–48Google Scholar
  7. 7.
    I. Bauer, R. Pignatelli, Product-Quotient Surfaces: new invariants and algorithms. To appear on Groups, Geometry and Dynamics. arxiv:math/1308.5508
  8. 8.
    I. Bauer, F. Catanese, R. Pignatelli, Complex surfaces of general type: some recent progress. Global Aspects of Complex Geometry (Springer, Berlin, 2006), pp. 1–58Google Scholar
  9. 9.
    I. Bauer, R. Pignatelli, The classification of minimal product-quotient surfaces with \(p_g=0\). Math. Comput. 81(280), 2389–2418 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    I. Bauer, F. Catanese, F. Grunewald, R. Pignatelli, Quotients of a product of curves by a finite group and their fundamental groups. Am. J. Math. 134(4), 993–1049 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    A. Beauville, Complex Algebraic Surfaces. Translated from the French by R. Barlow, N.I. Shepherd-Barron, M. Reid. London Mathematical Society Lecture Note Series, vol. 68 (Cambridge University Press, Cambridge, 1983). pp. iv+132Google Scholar
  12. 12.
    W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I: the user language. J. Symb. Comput. 24(3–4), 235–265 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    G. Carnovale, F. Polizzi, The classification of surfaces with \(p_g=q=1\) isogenous to a product of curves. Adv. Geom. 9, 233–256 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    F. Catanese, Fibred Surfaces, varieties isogeneous to a product and related moduli spaces. Am. J. Math. 122(1), 1–44 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    D. Frapporti, Mixed surfaces, new surfaces of general type with \(p_g=0\) and their fundamental group. To appear on Coll. Math. arXiv:1105.1259
  16. 16.
    D. Frapporti, R. Pignatelli, Mixed quasi-étale quotients with arbitrary singularities. Glasgow Math. J. 57, 143–165 (2015)Google Scholar
  17. 17.
    A. Garbagnati, M. Penegini, K3 surfaces with a non-symplectic automorphism and product-quotient surfaces with cyclic groups. arXiv:1303.1653
  18. 18.
    M. Mendes Lopes, R. Pardini, The bicanonical map of surfaces with \(p_g=0\) and \(K^2 \ge 7\). Bull. Lond. Math. Soc. 33, 265–274 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    E. Mistretta, F. Polizzi, Standard isotrivial fibrations with \(p_g=q=1\) II. J. Pure Appl. Algebra 214, 344–369 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    R. Pardini, The classification of double planes of general type with \(K^2=8\) and \(p_g=0\). J. Algebra 259, 95–118 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    M. Penegini, The classification of isotrivially fibred surfaces with \(p_g=q=2\), and topics on beauville surfaces. Ph.D Thesis University of Bayreuth (2010)Google Scholar
  22. 22.
    M. Penegini, The classification of isotrivially fibred surfaces with \(p_g=q=2\). With an appendix by S. Rollenske. Collect. Math. 62, 239–274 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    F. Polizzi, Surfaces of general type with \(p_g=q=1\), \(K^2=8\) and bicanonical map of degree 2. Trans. Am. Math. Soc. 358, 759–798 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    F. Polizzi, On surfaces of general type with \(p_g=q=1\) isogenous to a product of curves. Commun. Algebra 36, 2023–2053 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    F. Polizzi, Standard isotrivial fibrations with \(p_g=q=1\). J. Algebra 321, 1600–1631 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    F. Polizzi, Numerical properties of isotrivial fibrations. Geom. Dedicata 147, 323–355 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    F. Serrano, Isotrivial fibred surfaces. Ann. Mat. Pura Appl. 171(4), 63–81 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    F. Zucconi, Surfaces with \(p_g=q=2\) and an irrational pencil. Can. J. Math. 55, 649–672 (2003)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Dipartimento di Matematica dell’Università di TrentoTrentoItaly

Personalised recommendations