Skip to main content

Extraction of Lignin from Biomass for Biodiesel Production

  • Chapter
  • First Online:

Abstract

The renewable biorefinery concept involves transforming a pulp mill into a multipurpose biofuels, biomaterials, and biopower production facility in which these products are produced in an ecofriendly and sustainable manner. A key challenge in this process is the recovery of lignin from process streams such that it can be utilized in a variety of innovative green chemistry processes. This chapter focuses on the various methods used for the recovery of lignin and application of lignin. The study also discusses about the production of biofuel, specifically biodiesel via Lignoboost lignin pyrolysis as biofuel, steam gasification/pyrolysis of kraft lignin for biofuel, lignin hydrocracking for biofuel and hydrogenation of black liquor. Besides this, the study also throws some light on the availability of biomass, its sources, and global production of biodiesel.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdulkareem A, Jimoh A, Afolabi A, Odigure J, Patience D (2012) Production and characterization of biofuel from non-edible oils: an alternative energy sources to petrol diesel

    Google Scholar 

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685

    Article  CAS  PubMed  Google Scholar 

  • Al Jaber SA, Amin AZ, Clini C, Dixon R, Eckhart M, El-Ashry M, Hamilton K (2012) RenewableS GLOBAL STATUS REPORT (Ren21), Renewable Energy Policy Network for the 21st Century, 15, Rue de Milan F-75441 Paris CEDEX 09 France, pp 1–170

    Google Scholar 

  • Atabani A, Silitonga A, Badruddin IA, Mahlia T, Masjuki H, Mekhilef S (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sustain Energy Rev 16(4):2070–2093

    Article  Google Scholar 

  • Axegård P, STFI-Packforsk A (2007) The kraft pulp mill as a biorefinery. Division Fiber, Pulp Energy and Chemicals. STFI-Packforsk P.O. Box 5604 S-114 86, Stockolm, Sweden, Annual Report, Swedish Foundation for Strategic Environmental Research, pulp and paper industry and the Swedish Energy Agency, pp 1–6

    Google Scholar 

  • Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sustain Energy Rev 21:506–523

    Article  CAS  Google Scholar 

  • Bakshi NN, Dalai AK, Thring RW (1999) Biomass char and lignin: potential application. Department of Chemical Engineering, University of Saskatchewan, 1 IO Science Place, Saskatoon, SK S7N 5C9, University of New Brunswick, P.O. Box 4400, Fredericton, NB E3B 5A3, pp 278–282

    Google Scholar 

  • Balat M (2008). Biodiesel fuel production from vegetable oils via supercritical ethanol transesterification. Energy Sour Part A 30(5):429–440

    Article  CAS  Google Scholar 

  • Bhanu Rekha V (2013) Enhancing the absorbency of bagasse through enzymatic delignification. J Fash Technol Text Eng. doi:10.4172/jftte.1000101

    Google Scholar 

  • Black A (2001) Globalization and restructuring in the South African automotive industry. J Int Dev 13(6):779–796

    Article  Google Scholar 

  • Bozbas K (2008) Biodiesel as an alternative motor fuel: production and policies in the European Union. Renew Sustain Energy Rev 12(2):542–552. doi:http://dx.doi.org/10.1016/j.rser.2005.06.001

    Article  CAS  Google Scholar 

  • Bridgwater A, Peacocke G (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4(1):1–73

    Article  CAS  Google Scholar 

  • Bridgwater A, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Organ Geochem 30(12):1479–1493

    Article  CAS  Google Scholar 

  • Brodin I (2009) Chemical Properties and Thermal Behaviour of Kraft Lignins, PhD dissertation, KTH Royal Institute of Technology School of Chemical Sciences and Engineering Department of Fibre and Polymer Technology Division of Wood Chemistry and Pulp Technology, ISBN 978-91-7415-406-1, SE-100 44 Stockholm Sweden

    Google Scholar 

  • Browning W, Perricone A (1962) Lignosulfonate drilling mud conditioning agents. SPE-AIME 37th Annual Fall Mtg. in Oct, 7–10

    Google Scholar 

  • Brunow G (2005) Methods to reveal the structure of lignin. Biopolym Online. doi:10.1002/3527600035.bpol1003

    Google Scholar 

  • Bucholtz EC (2007) Biodiesel synthesis and evaluation: an organic chemistry experiment. J Chem Educ 84(2):296

    Article  CAS  Google Scholar 

  • Calvo-Flores FG, Dobado JA (2010) Lignin as renewable raw material. ChemSusChem 3(11):1227–1235

    Article  CAS  PubMed  Google Scholar 

  • Castillo del Pilar M (1997) Degradation of pesticides by Phanerochaete chrysosporium in solid substrate fermentation. Swedish University of Agricultural Sciences (SLU), Sweden

    Google Scholar 

  • Demirbas A (2005) Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energy Combust Sci 31(2):171–192

    Article  CAS  Google Scholar 

  • Demirbas A (2008) Effect of alkali on liquid yields from the pyrolysis of olive oil. Energy Sour Part A 30(11):1060–1064

    Article  CAS  Google Scholar 

  • Demirbas A (2010) Biorefineries: for biomass upgrading facilities. In: Biorefinery, pp 75–92

    Google Scholar 

  • Dickinson J, Verrill C, Kitto J (1998) Development and evaluation of a low-temperature gasification process for chemical recovery from kraft black liquor. Paper presented at the International Chemical Recovery Conference

    Google Scholar 

  • Fatih Demirbas M (2009). Biorefineries for biofuel upgrading: a critical review. Appl Energy 86:151–161

    Article  Google Scholar 

  • Fernando EF, Vallejos EM, Area MC (2010) Lignin recovery from spent liquors from ethanol-water fractionation of sugar cane bagasse. Cellulose Chem Technol 44:311–318

    CAS  Google Scholar 

  • Fox SC, McDonald AG (2010) Chemical and thermal characterization of three industrial lignins and their corresponding lignin esters. BioResources 5:990–1009

    Google Scholar 

  • Giakoumis EG (2013) A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation. Renew Energy 50:858–878

    Article  CAS  Google Scholar 

  • Goldemberg J, Teixeira Coelho S (2004) Renewable energy—traditional biomass vs. modern biomass. Energy Policy 32(6):711–714

    Article  Google Scholar 

  • Gopalakrishnan K, Teixeira Coelho S (2010) Renewable energy—traditional biomass Biowastes and Biomass, pp 247–274. Edited by Samir KK, Rao YS, Tian CZ, Buddhi PL, Tyagi RD, Kao CM, ISBN (print): 978-0-7844-1089-9, American Society of Civil Engineers

    Google Scholar 

  • Gosselink R (2011). Lignin as a renewable aromatic resource for the chemical industry, Mini-symposium organised by Wageningen UR Lignin Platform, Wageningen, Netherlands.

    Google Scholar 

  • Group UNEPBW, Management UNEPIPfSR (2009) Towards sustainable production and use of resources: assessing biofuels: UNEP/Earthprint

    Google Scholar 

  • Hafizan C, Zainura NZ (2013) Biofuel: advantages and disadvantages based on Life Cycle Assessment (LCA) perspective. J Environ Res Dev 7(4):1444–1449

    CAS  Google Scholar 

  • Hedlund T (2010) High Pressure and Temperature Conversion of Lignin and Black Liquor to Liquid Fuels, Master’s Thesis within the Innovative and Sustainable Chemical Engineering programme, Department of Energy and Environment Division of Heat and Power Technology CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden

    Google Scholar 

  • Heinimö J, Junginger M (2009) Production and trading of biomass for energy–an overview of the global status. Biomass Bioenerg 33(9):1310–1320

    Article  Google Scholar 

  • Hofman V (2003) Biodiesel Fuel. NDSU Extension Service, North Dakota State University of Agriculture. Applied Science and US Department of Agriculture cooperating, Fargo, North Dakota

    Google Scholar 

  • Hoque ME, Singh A, Chuan YL (2011) Biodiesel from low cost feedstocks: the effects of process parameters on the biodiesel yield. Biomass Bioenerg 35(4):1582–1587

    Article  CAS  Google Scholar 

  • Hough G (1985) Chemical recovery in the alkaline pulping processes: a project of the Alkaline Pulping Committee of the Pulp Manufacture Division: Tappi ISBN: 0898520460, Atlanta, GA, USA: TAPPI, c1985, 312 p

    Google Scholar 

  • Janković B (2011) The comparative kinetic analysis of Acetocell and Lignoboost® lignin pyrolysis: the estimation of the distributed reactivity models. Bioresour Technol 102(20):9763–9771. doi:http://dx.doi.org/10.1016/j.biortech.2011.07.080

    Article  PubMed  Google Scholar 

  • Jansen RA (2012) Second generation biofuels and biomass: essential guide for investors, scientists and decision makers. Wiley-VCH, Weinheim

    Google Scholar 

  • Joshi RM, Pegg MJ (2007) Flow properties of biodiesel fuel blends at low temperatures. Fuel 86(1):143–151

    Article  CAS  Google Scholar 

  • Karmakar A, Karmakar S, Mukherjee S (2010) Properties of various plants and animals feedstocks for biodiesel production. Bioresour Technol 101(19):7201–7210

    Article  CAS  PubMed  Google Scholar 

  • Knothe G (2001), Historical perspective on Vegetable-oil based Diesel fuels. INFORM 12, 1103–1107.

    Google Scholar 

  • Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86(10):1059–1070

    Article  CAS  Google Scholar 

  • Knothe G, Van Gerpen JH, Krahl J (2005) The biodiesel handbook, vol 1. AOCS press, Champaign

    Book  Google Scholar 

  • Koçar G, Civaş N (2013) An overview of biofuels from energy crops: current status and future prospects. Renew Sustain Energy Rev 28(0):900–916. doi:http://dx.doi.org/10.1016/j.rser.2013.08.022

    Article  Google Scholar 

  • Kutscha NP, Gray JR (1970) The potential of lignin research

    Google Scholar 

  • Lai Y-Z, Sarkanen KV (1971) Isolation and structural studies. In: Sarkanen KV, Ludwig CH (eds) Lignins: occurrence, formation, structure and reactions. WileyInterscience, New York, pp 165–240

    Google Scholar 

  • Li J (2011) Isolation of lignin from wood

    Google Scholar 

  • Lim S, Teong LK (2010) Recent trends, opportunities and challenges of biodiesel in Malaysia: an overview. Renew Sustain Energy Rev 14(3):938–954

    Article  CAS  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467

    Article  CAS  Google Scholar 

  • Macfarlane A, Prestidge R, Farid M, Chen J (2009) Dissolved air flotation: a novel approach to recovery of organosolv lignin. Chem Eng J 148(1):15–19

    Article  CAS  Google Scholar 

  • Mario (2011) A Comparison Between Raw Material and Technologies for a Sustainable Biodiesel Production Industry, Economic Effects of Biofuel Production, Dr. Marco Aurelio Dos Santos Bernardes (ed.), ISBN: 978-953-307-178-7, InTech, Croatia

    Google Scholar 

  • Marker TL, Petri JA (2009) Gasoline and diesel production from pyrolytic lignin produced from pyrolysis of cellulosic waste: google patents

    Google Scholar 

  • Mattinen M-L, Suortti T, Gosselink R, Argyropoulos DS, Evtuguin D, Suurnäkki A, et al. (2008) Polymerization of different lignins by laccase. BioResources 3(2):549–565

    Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46

    Article  CAS  PubMed  Google Scholar 

  • Mcmillen JM (1967) US department of agriculture forest service forest products laboratory Madison, WIS

    Google Scholar 

  • Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & Fuels 20(3):848–889

    Article  CAS  Google Scholar 

  • Moser BR (2011) Biodiesel production, properties, and feedstocks. In: Biofuels. Springer, New York, pp 285–347

    Google Scholar 

  • Mousdale DM (2010) Introduction to biofuels. CRC, Boca Raton

    Google Scholar 

  • Moser (2011) Biodiesel production, properties, and feedstocks. In Vitro Cell Dev Biol Plant 45:229–266 (2009)

    Google Scholar 

  • Payen A (1839) Memoir on the composition of the tissue of plants and of woody material. Comptes Rendus 9:149

    Google Scholar 

  • Pop A, Ceclan R, Ceclan M (2012) Biodiesel from waste vegetable oils. Chem Eng Trans 29:1177–1182

    Google Scholar 

  • Pousa GP, Santos AL, Suarez PA (2007) History and policy of biodiesel in Brazil. Energy Policy 35(11):5393–5398

    Article  Google Scholar 

  • Robinson AR, Mansfield SD (2009) Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling. Plant J 58(4):706–714

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Brown RH, Hunt MA, Pickel DL, Pickel JM, Messman JM, et al. (2012) Turning renewable resources into value-added polymer: development of lignin-based thermoplastic. Green Chem 14(12):3295–3303

    Article  CAS  Google Scholar 

  • Sarin A (2012) Biodiesel: production and properties. Royal Society of Chemistry

    Google Scholar 

  • Savaliya M, Dhorajiya B, Dholakiya B (2013) Recent advancement in production of liquid biofuels from renewable resources: a review. Res Chem Intermed 41:475–509. doi:10.1007/s11164–013-1231-z The volume no. is 41, pages 475–509

    Google Scholar 

  • Schmidt CW (2007) Biodiesel: cultivating alternative fuels. Environ Health Perspect 115(2):86–91

    Article  Google Scholar 

  • Schoemaker HE, Piontek K (1996) On the interaction of lignin peroxidase with lignin. Pure Appl Chem 68:2089

    Google Scholar 

  • Sims RE (2002) The brilliance of bioenergy: in business and in practice: Earthscan. ISBN: 190291628X, Published by James & James (Science Publishers) Ltd., 35-37 William Road London NW1 3ER, UK

    Google Scholar 

  • Singh RP (1980) Kraft pulp bleaching and recovery process: google patents

    Google Scholar 

  • Singh S, Singh D (2010) Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renew Sustain Energy Rev 14(1):200–216

    Article  CAS  Google Scholar 

  • Songstad D, Lakshmanan P, Chen J, Gibbons W, Hughes S, Nelson R (2009) Historical perspective of biofuels: learning from the past to rediscover the future. In Vitro Cell Dev Biol Plant 45:189–192

    Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101(13):4744–4753

    Article  CAS  PubMed  Google Scholar 

  • Thielemans W, Can E, Morye S, Wool R (2002) Novel applications of lignin in composite materials. J Appl Polym Sci 83(2):323–331

    Article  CAS  Google Scholar 

  • Vasudevan PT, Fu B (2010) Environmentally sustainable biofuels: advances in biodiesel research. Waste Biomass Valoris 1(1):47–63

    Article  CAS  Google Scholar 

  • Vasudevan PT, Gagnon MD, Briggs MS (2010) Environmentally sustainable biofuels—the case for biodiesel, biobutanol and cellulosic ethanol Sustainable biotechnology Sources of Renewable Energy. Singh OV, Harvey SP (eds) 2010, XVII, 323 p, ISBN: 978-90-481-3295-9, Springer eBook, pp 43–62

    Google Scholar 

  • Wallberg O, Holmqvist A, Jönsson A-S (2005) Ultrafiltration of kraft cooking liquors from a continuous cooking process. Desalination 180(1):109–118

    Article  CAS  Google Scholar 

  • Yousuf A (2012) Biodiesel from lignocellulosic biomass—prospects and challenges. Waste Manage 32(11):2061–2067. doi:http://dx.doi.org/10.1016/j.wasman.2012.03.008

  • Yusuf N, Kamarudin S, Yaakub Z (2011) Overview on the current trends in biodiesel production. Energy Convers Manage 52(7):2741–2751

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial assistance under project grant STIRF 29/2013I by Universiti Teknologi PETRONAS is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.H. Bhat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhat, A., Dasan, Y., Khan, I. (2015). Extraction of Lignin from Biomass for Biodiesel Production. In: Hakeem, K., Jawaid, M., Y. Alothman, O. (eds) Agricultural Biomass Based Potential Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13847-3_8

Download citation

Publish with us

Policies and ethics