Inference-Proof Data Publishing by Minimally Weakening a Database Instance

  • Joachim Biskup
  • Marcel Preuß
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8880)

Abstract

Publishing of data is usually only permitted when complying with a confidentiality policy. To this end, this work proposes an approach to weaken an original database instance: within a logic-oriented modeling definite knowledge is replaced by disjunctive knowledge to introduce uncertainty about confidential information. This provably disables an adversary to infer this confidential information, even if he employs his a priori knowledge and his knowledge about the protection mechanism. As evaluated based on a prototype implementation, this approach can be made highly efficient. If a heuristic – resulting only in a slight loss of availability – is employed, it can be even used in interactive scenarios.

Keywords

A Priori Knowledge Confidentiality Policy Data Publishing Disjunctive Knowledge First-Order Logic Inference-Proofness Information Dissemination Control k-Anonymity Weakening 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)MATHGoogle Scholar
  2. 2.
    Bertossi, L.E., Li, L.: Achieving data privacy through secrecy views and null-based virtual updates. IEEE Transactions on Knowledge and Data Engineering 25(5), 987–1000 (2013)CrossRefGoogle Scholar
  3. 3.
    Biskup, J.: Inference-usability confinement by maintaining inference-proof views of an information system. International Journal of Computational Science and Engineering 7(1), 17–37 (2012)CrossRefGoogle Scholar
  4. 4.
    Biskup, J., Bonatti, P.A.: Controlled query evaluation with open queries for a decidable relational submodel. Annals of Mathematics and Artificial Intelligence 50(1-2), 39–77 (2007)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Biskup, J., Hartmann, S., Link, S., Lochner, J.-H., Schlotmann, T.: Signature-based inference-usability confinement for relational databases under functional and join dependencies. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 56–73. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Biskup, J., Preuß, M.: Database fragmentation with encryption: Under which semantic constraints and a priori knowledge can two keep a secret? In: Wang, L., Shafiq, B. (eds.) DBSec 2013. LNCS, vol. 7964, pp. 17–32. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Biskup, J., Wiese, L.: A sound and complete model-generation procedure for consistent and confidentiality-preserving databases. Theoretical Computer Science 412(31), 4044–4072 (2011)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Boost Graph Library: Maximum cardinality matching (2014), http://www.boost.org/doc/libs/1_55_0/libs/graph/doc/maximum_matching.html
  9. 9.
    Campan, A., Truta, T.M.: Data and structural k-anonymity in social networks. In: Bonchi, F., Ferrari, E., Jiang, W., Malin, B. (eds.) PinKDD 2008. LNCS, vol. 5456, pp. 33–54. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Samarati, P.: k-Anonymity. In: Yu, T., Jajodia, S. (eds.) Secure Data Management in Decentralized Systems. Advances in Information Security, vol. 33, pp. 323–353. Springer, New York (2007)CrossRefGoogle Scholar
  11. 11.
    Fung, B.C., Wang, K., Fu, A.W.C., Yu, P.S.: Introduction to Privacy-Preserving Data Publishing: Concepts and Techniques. Data Mining and Knowledge Discovery. CRC Press, Boca Raton (2011)Google Scholar
  12. 12.
    Hay, M., Miklau, G., Jensen, D., Towsley, D.F., Li, C.: Resisting structural re-identification in anonymized social networks. VLDB Journal 19(6), 797–823 (2010)CrossRefGoogle Scholar
  13. 13.
    Knuth, D.E.: The Stanford GraphBase: A Platform for Combinatorial Computing. ACM Press, New York (1993)Google Scholar
  14. 14.
    Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 5th edn. Algorithms and Combinatorics. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Levesque, H.J., Lakemeyer, G.: The Logic of Knowledge Bases. The MIT Press, Cambridge (2000)Google Scholar
  16. 16.
    Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: ℓ-diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data 1(1) (2007)Google Scholar
  17. 17.
    Magun, J.: Greedy matching algorithms: An experimental study. ACM Journal of Experimental Algorithmics 3(6) (1998)Google Scholar
  18. 18.
    Mehlhorn, K., Näher, S.: LEDA: A platform for combinatorial and geometric computing. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  19. 19.
    Ramakrishnan, R., Gehrke, J.: Database Management Systems, 3rd edn. McGraw-Hill, Boston (2003)MATHGoogle Scholar
  20. 20.
    Stiege, G.: Playing with Knuth’s words.dat. Tech. Rep. 1/12, Department of Computer Science, University of Oldenburg, Germany (May 2012)Google Scholar
  21. 21.
    Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5), 557–570 (2002)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Vazirani, V.V.: A theory of alternating paths and blossoms for proving correctness of the \(O(\sqrt{|V|}.|E|)\) general graph maximum matching algorithm. Combinatorica 14(1), 71–109 (1994)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Wong, R.C.W., Fu, A.W.C.: Privacy-Preserving Data Publishing – An Overview. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, San Rafael (2010)MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Joachim Biskup
    • 1
  • Marcel Preuß
    • 1
  1. 1.Technische Universität DortmundDortmundGermany

Personalised recommendations