Skip to main content

Opportunistic Spectrum Access

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

We discuss the key components of the current de facto spectrum sharing architecture, opportunistic spectrum access, including spectrum sensing, spectrum access, and spectrum handoff. We then discuss the challenges for the opportunistic spectrum access architecture. Next, we introduce a geo-location based spectrum access approach that is designed for the TV bands. We discuss the TV band availability for secondary access, and present the framework of accessing idle TV bands.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhao Q, Geirhofer S, Tong L, Sadler B (2008) Opportunistic spectrum access via periodic channel sensing. IEEE Trans Signal Process 56(2):785–796

    Article  MathSciNet  Google Scholar 

  2. Huang S, Liu X, Ding Z (2008) Opportunistic spectrum access in cognitive radio networks. Proceedings of IEEE Infocom, pp 1427–1435

    Google Scholar 

  3. Wang B, Ji Z, Liu K (2007) Primary-prioritized Markov approach for dynamic spectrum access. Proc. IEEE DySPAN, pp 507–515

    Google Scholar 

  4. Shi Y, Hou T (2008) A distributed optimization algorithm for multi-hop cognitive radio networks. Proceedings of IEEE Infocom, pp 1292–1300

    Google Scholar 

  5. Zhao Q, Tong L, Swami A, Chen Y (2007) Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: a POMDP framework. IEEE J Sel Areas Commun 25(3):589–600

    Article  Google Scholar 

  6. Hamdaoui B, Shin K (2008) OS-MAC: an efficient MAC protocol for spectrum-agile wireless networks. IEEE Trans Mob Comput 7(8):915–930

    Google Scholar 

  7. Jia J, Zhang Q, Shen X (2008) HC-MAC: a hardware-constrained cognitive MAC for efficient spectrum management. IEEE J Sel Areas Commun 26(1):106–117

    Article  Google Scholar 

  8. Timmers M, Dejonghe A, van der Perre L, Catthoor F (2007) A distributed multichannel MAC protocol for cognitive radio networks with primary user recognition. Proc. Crowncom, pp 216–223

    Google Scholar 

  9. Le L, Hossain E (2008) OSA-MAC: a MAC protocol for opportunistic spectrum access in cognitive radio networks. Proc. IEEE WCNC, pp 1426–1430

    Google Scholar 

  10. Su H, Zhang X (2008) Cross-layer based opportunistic MAC protocols for qos provisionings over cognitive radio wireless networks. IEEE J Sel Areas Commun 26(1):118–129

    Article  Google Scholar 

  11. Yuan Y, Bahl P, Chandra R, Moscibroda T, Wu Y (2007) Allocating dynamic time-spectrum blocks in cognitive radio networks. Proc. ACM MobiHoc, pp 130–139

    Google Scholar 

  12. Yuan Y, Bahl P, Chandra R, Chou P, Ferrell J, Moscibroda T, Narlanka S, Wu Y (2007) KNOWS: cognitive radio networks over white spaces. Proc. IEEE DySPAN, pp 416–427

    Google Scholar 

  13. Sahai A, Hoven N, Tandra R (2004) Some fundamental limits on cognitive radio. Proc. Allerton Conference

    Google Scholar 

  14. Digham F, Alouini M, Simon M (2003) On the energy detection of unknown signals over fading channels. Proc. IEEE ICC

    Google Scholar 

  15. Sutton P, Nolan K, Doyle L (2008) Cyclostationary signatures in practical cognitive radio applications. IEEE J Sel Areas Commun 26(1):13–24

    Article  Google Scholar 

  16. Turunen V, Kosunen M, Huttunen A, Kallioinen S, Ikonen P, Parssinen A, Ryynanen J (2009) Implementation of Cyclostationary Feature Detector for Cognitive Radios. CROWMCOM'09

    Google Scholar 

  17. Zeng Y, Liang Y-C (2009) Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Trans Commun 57(6):1784–1793

    Article  Google Scholar 

  18. Tian Z, Giannakis G (2006) A wavelet approach to wideband spectrum sensing for cognitive radios. Cognitive Radio Oriented Wireless Networks and Communications, 2006. 1st International Conference on, pp 1–5

    Google Scholar 

  19. Zhao Y, Min S, Xin C (2011) A weighted cooperative spectrum sensing framework for infrastructure-based cognitive radio networks. Comput Commun (Elsevier Computer Science (in press))

    Google Scholar 

  20. Gandetto M, Regazzoni C (2007) Spectrum sensing: a distributed approach for cognitive terminals. IEEE J Sel Areas Commun 25(3):546–557

    Article  Google Scholar 

  21. Bahl P, Chandra R, Dunagan J (2004) SSCH: slotted seeded channel hopping for capacity improvement in IEEE 802.11 ad-hoc wireless networks. ACM MobiCom

    Google Scholar 

  22. So J, Vaidya NH (2004) Multi-channel MAC for ad hoc networks: handling multi-channel hidden terminals using a single transceiver. Proc. ACM MobiHoc, pp 222–233

    Google Scholar 

  23. Zhang Y, Yu G, Li Q, Wang H, Zhu X, Wang B (2014) Channel-hopping-based communication rendezvous in cognitive radio networks. IEEE/ACM Trans Netw 22(3):889–902

    Article  Google Scholar 

  24. Zhang Y, Li Q, Yu G, Wang B (2011) ETCH: efficient channel hopping for communication rendezvous in dynamic spectrum access networks. Proceedings of IEEE Infocom

    Google Scholar 

  25. Bian K, Park J-M (2011) Asynchronous channel hopping for establishing rendezvous in cognitive radio networks. Proceedings of IEEE Infocom, pp 236–240

    Google Scholar 

  26. Lin Z, Liu H, Chu X, Leung Y-W (2011) Jump-stay based channel-hopping algorithm with guaranteed rendezvous for cognitive radio networks. Proceedings of IEEE Infocom, pp 2444–2452

    Google Scholar 

  27. Shih C-F, Wu TY, Liao W (2010) DH-MAC: a dynamic channel hopping mac protocol for cognitive radio networks. Proc. IEEE ICC

    Google Scholar 

  28. Bian K, Park J-M, Chen R (2009) A quorum-based framework for establishing control channels in dynamic spectrum access networks. Proc. ACM MobiCom, pp 25–36

    Google Scholar 

  29. Theis N, Thomas R, DaSilva L (2011) Rendezvous for cognitive radios. IEEE Trans Mob Comput 10(2):216–227

    Article  Google Scholar 

  30. Xin C, Song M, Ma L, Shetty S, Shen C-C (2010) Control-free dynamic spectrum access for cognitive radio networks. Proc. IEEE ICC

    Google Scholar 

  31. Xin C, Song M, Ma L, Shen C-C (2011) Performance analysis of a control-free dynamic spectrum access scheme. IEEE Trans Wirel Commun 10(12):4316–4323

    Article  Google Scholar 

  32. Xin C, Song M, Ma L, Shen C-C (2013) Rop: near-optimal rendezvous for dynamic spectrum access networks. IEEE Trans Veh Technol 62(7):3383–3391

    Article  Google Scholar 

  33. FCC (2004) Unlicensed operation in the TV broadcast bands. ET Docket No. 04-186, Notice of Proposed Rulemaking (NPRM), May 2004

    Google Scholar 

  34. Wellens M, Riihijarvi J, Gordziel M, Mahonen P (2008) Evaluation of cooperative spectrum sensing based on large scale measurements. Proc. IEEE DySPAN

    Google Scholar 

  35. Chen C, Song M, Xin C (2013) A density based scheme to countermeasure spectrum sensing data falsification attacks in cognitive radio networks. Proc. GLOBECOME, pp 623–628

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChunSheng Xin .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Xin, C., Song, M. (2015). Opportunistic Spectrum Access. In: Spectrum Sharing for Wireless Communications. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-13803-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13803-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13802-2

  • Online ISBN: 978-3-319-13803-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics