Skip to main content

Solar Photoelectrochemical Water Splitting with Bioconjugate and Bio-Hybrid Electrodes

  • Chapter
Book cover From Molecules to Materials

Abstract

Biohybrid electrodes of different types have been described in the current chapter. The biohybrid photoanodes and photocathodes are new class of materials for solar energy application by utilizing the mother nature’s photosynthetic units and its biomimetic counterparts. The physical characteristics and the performance of the biohybrid electrodes have been described in terms of charge transfer, hydrogen evolution, and stability in harsh electrochemical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rabinovich E (1961) Photochemical utilization of light energy. Proc Natl Acad Sci USA 47: 1296-1303.

    Article  Google Scholar 

  2. Tributsch H, Calvin M (1971) Electrochemistry of excited molecules: photo electrochemical reactions of chlorophylls. Photochem Photobiol 14: 95-112.

    Article  Google Scholar 

  3. Osterloh F E (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20: 35–54.

    Article  Google Scholar 

  4. Gust D, Moore T A, Moore A L (2012) Realizing artificial photosynthesis. Faraday Discuss 155: 9 -26.

    Article  Google Scholar 

  5. Rabinowitch E (1940) The Photogalvanic Effect II. The photogalvanic properties of thionine-iron system. J Chem Phys 8: 560-566.

    Article  Google Scholar 

  6. Fong F K, Winograd N (1976) In Vitro Solar Conversion after the Primary Light Reaction in Photosynthesis. Reversible Photogalvanic Effects of Chlorophyll - Quinhydrone Half-Cell Reaction. J Am Chem Soc 98: 2287-2289.

    Article  Google Scholar 

  7. Allam N K, Yen C, Near R D et al (2011) Bacteriorhodopsin / TiO2 nanotube arrays hybrid system for enhanced photoelectrochemical water splitting. Energ Environ Sci 4, 2909-2914.

    Article  Google Scholar 

  8. Balasubramanian S, Wang P, Schaller R D et al (2013) High-Performance Bioassisted Nanophotocatalyst for Hydrogen Production. Nano Lett 13: 3365−3371.

    Article  Google Scholar 

  9. Saga Y, Watanabe T, Koyama K E et al (1999) Mechanism of Photocurrent Generation from Bacteriorhodopsin on Gold Electrodes. J Phys Chem B 103, 234-238.

    Article  Google Scholar 

  10. Horn C, Steinem C (2005) Photocurrents Generated by Bacteriorhodopsin Adsorbed on Nano-Black Lipid Membranes. Biophys J 89:1046–1054.

    Article  Google Scholar 

  11. Bora D K, Rozhkova E A, Schrantz K et al (2012) Functionalization of Nanostructured Hematite Thin-Film Electrodes with the Light-Harvesting Membrane Protein C-Phycocyanin Yields an Enhanced Photocurrent. Adv Funct Mater 22: 490 – 502.

    Article  Google Scholar 

  12. Eggleston C M, Khare N, Lovelace D M (2006) Cytochrome c interaction with hematite (α-Fe2O3) surface. J Electron Spectrosc Relat Phenom 150: 220 – 227.

    Article  Google Scholar 

  13. Ibrahim N, Kamarudin S K, Minggu L J (2014) Biofuel from biomass via photo-electrochemical reactions: An overview., J Power Sources 259: 33-42.

    Article  Google Scholar 

  14. Bae S, Shim E, Yoon J et al (2008) Photoanodic and cathodic role of anodized tubular Titania in light-sensitized enzymatic hydrogen production. J Power Sources 185: 439–444.

    Article  Google Scholar 

  15. Joo H, Bae S, Kim C et al (2009) Hydrogen evolution in enzymatic photoelectrochemical cell using modified seawater electrolytes produced by membrane desalination process. Sol Energ Mat Sol C 93: 1555–1561.

    Article  Google Scholar 

  16. Boettcher S W, Spurgeon J M, Putnam M C (2010) Energy-Conversion Properties of Vapor-Liquid-Solid–Grown SiliconWire-Array Photocathodes. Science 327: 185-187.

    Article  Google Scholar 

  17. Artero V, Fontecave M (2011) Light-driven bioinspired water splitting: Recent developments in photoelectrode materials. C R Chimie 14: 799-810.

    Article  Google Scholar 

  18. Paracchino A, Brauer J C, Moser J et al (2012) Synthesis and Characterization of High-Photoactivity Electrodeposited Cu2O Solar Absorber by Photoelectrochemistry and Ultrafast Spectroscopy. J Phys Chem C 116: 7341-7350.

    Article  Google Scholar 

  19. Janzen A F, Seibert M (1980) Photoelectrochemical conversion using reaction-center electrodes. Nature, 286: 584 - 585.

    Article  Google Scholar 

  20. Kumar B, Beyler M, Kubiak C P et al (2012) Photoelectrochemical Hydrogen Generation by an [FeFe] Hydrogenase Active Site Mimic at a p-Type Silicon/Molecular Electrocatalyst Junction. Chem Eur J 18: 1295 – 1298.

    Article  Google Scholar 

  21. Reisner E, Fontecilla - Camps J C, Armstrong F A (2009) Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production, Chem Commun 550 - 552.

    Google Scholar 

  22. Tran P D, Artero V, Fontecave M (2010) Water electrolysis and photoelectrolysis on electrodes engineered using biological and bio-inspired molecular systems, Energ Environ Sci 3: 727–747.

    Article  Google Scholar 

  23. Reisner E, Powell D J, Cavazza C et al (2009) Visible Light-Driven H2 Production by Hydrogenases Attached to Dye-Sensitized TiO2 Nanoparticle. J Am Chem Soc 131: 18457-18466.

    Article  Google Scholar 

  24. Carmeli I, Frolov L, Carmeli C et al (2007) Photovoltaic Activity of Photosystem I-Based Self-Assembled Monolayer. J Am Chem Soc 129: 12352-12353.

    Article  Google Scholar 

  25. Hou Y, Abrams B L, Vesborg P C K et al (2011) Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution, Nat Mater 10: 434 - 438.

    Article  Google Scholar 

  26. Muellerwesterhoff U T, Nazzal A (1984) [l. l] Ferrocenophanes as Effective Catalysts in the Photoelectrochemical Hydrogen Evolution from Acidic Aqueous Media. J Am Chem Soc 106: 5381 - 5382.

    Article  Google Scholar 

  27. Lakadamyali F, Reisner E (2011) Photocatalytic H2 evolution from neutral water with a molecular cobalt catalyst on a dye-sensitised TiO2 nanoparticle. Chem Commun 47: 1695.

    Article  Google Scholar 

  28. Tran P D, Wong L H, Barber J et al (2012) Recent advances in hybrid photocatalysts for solar fuel production. Energy Environ Sci 5: 5902 – 5918.

    Article  Google Scholar 

  29. Utschig L M, Dimitrijevic N M, Poluektov, O G et al (2011) Photocatalytic Hydrogen Production from Noncovalent Biohybrid Photosystem I/Pt Nanoparticle Complexes. J Phys Chem Lett 2 (3): 236-241.

    Article  Google Scholar 

  30. Greening C, Berney M, Hards K et al (2014) A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent hydrogenases. Proc Acad Natl Sci USA 111(11): 4257-4261.

    Article  Google Scholar 

  31. De Lacey A L, Fernandez V M, Rousset M (2007) Activation and Inactivation of Hydrogenase Function and the Catalytic Cycle: Spectroelectrochemical Studies. Chem Rev 107 (10): 4304–4330.

    Article  Google Scholar 

  32. Morra S, Valetti F, Sadeghi S J et al (2011) Direct electrochemistry of an [FeFe]-hydrogenase on a TiO2 Electrode. Chem Commun 47: 10566.

    Article  Google Scholar 

  33. Hambourger M, Gervaldo M, Svedruzic D et al (2008) [FeFe]-Hydrogenase-Catalyzed H2 Production in a Photoelectrochemical Biofuel Cell. J Am Chem Soc 130 (6): 2015–2022.

    Article  Google Scholar 

  34. Nikandrov V V, Shlyk M A, Zorin N A et al (1988) Efficient photoinduced electron transfer from inorganic semiconductor TiO2 to bacterial hydrogenase. Fed Eur Biochem Soc Lett 234 (1):111–114.

    Article  Google Scholar 

  35. McDonald T J, Svedruzic D, Kim Y et al (2007) Wiring-Up Hydrogenase with Single-Walled Carbon Nanotubes. Nano Letters 7(11): 3528-3534.

    Article  Google Scholar 

  36. Brown K A, Dayal S, Ai X et al (2010) Controlled Assembly of Hydrogenase-CdTe Nanocrystal Hybrids for Solar Hydrogen Production. J Am Chem Soc 132: 9672–9680.

    Article  Google Scholar 

  37. Petrie S, Stranger R, Pace R J (2010) PSII, Mn-oxo complex: Location of Potential Substrate Water Binding Sites in the Water Oxidizing Complex of Photosystem II. Angew Chem Int Ed 49: 1 – 5.

    Article  Google Scholar 

  38. Siegbahn P E M (2009) Structures and Energetics for O2 Formation in Photosystem II. Acc Chem Res 42(12) 1871-1880.

    Article  Google Scholar 

  39. Lewis N S (2011) Light work with matter. Nature 414: 589

    Article  Google Scholar 

  40. Maly J, Krejci J, Ilie M et al (2005) Monolayers of photosystem II on gold electrodes with enhanced sensor response—effect of porosity and protein layer arrangement. Anal Bioanal Chem 381:1558 - 1567.

    Article  Google Scholar 

  41. Maly J, Masojidek J, Masci A (2005) Direct mediator less electron transport between the monolayer of photosystem II and poly(mercapto-p-benzoquinone) modified gold electrode—new design of biosensor for herbicide detection. Biosens Bioelectron 21: 923 - 932.

    Article  Google Scholar 

  42. Badura A, Guschin D, Esper B et al (2008) Photo-Induced Electron Transfer Between Photosystem 2 via Cross-linked Redox Hydrogels. Electroanalysis 20(10): 1043 – 1047.

    Article  Google Scholar 

  43. Hakala M, Tuominen I, Keranen M et al (2005) Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of Photosystem II. Biochim Biophys Acta 1706: 68 - 80.

    Article  Google Scholar 

  44. Kato M, Cardona T, Rutherford A W (2012) Photoelectrochemical Water Oxidation with Photosystem II Integrated in a Mesoporous Indium − Tin Oxide Electrode. J Am Chem Soc 134: 8332 - 8335.

    Article  Google Scholar 

  45. Brimblecombe R, Koo A, Dismukes G C et al (2010) Solar Driven Water Oxidation by a Bioinspired Manganese Molecular Catalyst. J Am Chem Soc 132: 2892–2894.

    Article  Google Scholar 

  46. Berns D S, MacColl R (1989) Phycocyanin in Physical-Chemical Studies. Chem Rev 89: 807-825.

    Article  Google Scholar 

  47. Glazer A N (1985), Light harvesting by phycobilisomes, Annu Rev Biophys Biophys Chem 14: 47-77.

    Article  Google Scholar 

  48. Chen Z, Samuelson L A, Akkara J et al (1995) Sol-Gel Encapsulated Light-Transducing Protein Phycoerythrin: A New Biomaterial. Chem Mater 7: 1779-1783.

    Article  Google Scholar 

  49. Glazer A N, Stryer L (1984) Phycofluor probes, Trends Biochem Sci 9: 423-427.

    Article  Google Scholar 

  50. Kathiravan A, Chandramohan M, Renganathan R et al (2009) Photoinduced electron transfer from phycoerythrin to colloidal metal semiconductor nanoparticles. Spectrochim Acta Part A 72: 496–501.

    Article  Google Scholar 

  51. Kathiravan A, Renganathan R (2009) Photosensitization of colloidal TiO2 nanoparticles with phycocyanin pigment. J Coll Interf Sci 335:1965.

    Google Scholar 

  52. Suemori Y, Nagata M, Nakamura Y et al (2006) Self-assembled monolayer of light-harvesting core complexes of photosynthetic bacteria on an amino-terminated ITO electrode. Photosynth Res 90: 17 – 21.

    Article  Google Scholar 

  53. Berg J M, Tymoczko J L, Stryer L (2002) Biochemistry, W. H. Freeman USA.

    Google Scholar 

  54. Modesto-Lopez L B, Thimsen E J, Collins A M et al(2010) Electrospray-assisted characterization and deposition of chlorosomes to fabricate a biomimetic light-harvesting device. Energy Environ Sci 3:216 – 222.

    Article  Google Scholar 

  55. Amao Y, Shuto N, Furuno K (2012) Artificial leaf device for solar fuel production. Faraday Discuss 155:289 – 296.

    Article  Google Scholar 

  56. Das R, Kiley P J, Segal M et al (2004) Integration of Photosynthetic Protein Molecular Complexes in Solid-State Electronic Devices, Nano Lett, 4 (6) :1079-1083.

    Article  Google Scholar 

  57. McNamara W R, Snoeberger III R C, Li G et al (2009) Hydroxamate anchors for water-stable attachment to TiO2 nanoparticles. Energ Environ Sci 2:1173–1175.

    Article  Google Scholar 

  58. Yehezkeli O, Wilner O I, Tel-Vered R et al (2010) Generation of Photocurrents by Bis-aniline-Cross-Linked Pt Nanoparticle / Photosystem I Composites on Electrodes. J Phys Chem B 114: 14383–14388.

    Article  Google Scholar 

  59. Smith M E B, Schumacher F F, Ryan C P et al (2010) Protein Modification, Bioconjugation, and Disulfide Bridging Using Bromomaleimides. J Am Chem Soc 132: 1960–1965.

    Article  Google Scholar 

  60. Freitag M, Galoppini E (2011) Molecular hostimides Bioconjugation, and Disulfide Bridging Nanoparticle Surfaces. Energ Environ Sci 4: 2482-2494.

    Article  Google Scholar 

  61. Leggett G J, Hunter C N (2007) Directed Formation of Micro- and Nanoscale Patterns of Functional Light-Harvesting LH2 Complexes. J Am Chem Soc 129:14625-14631.

    Article  Google Scholar 

  62. Escalante M, Maury P, Bruinink C M et al (2008) Directed assembly of functional light harvesting antenna complexes onto chemically patterned surfaces. Nanotechnology 19: 025101.

    Article  Google Scholar 

  63. Shinkarev V P, Brunner R, Wraight C A (1999) Application of near-field scanning optical microscopy in photosynthesis Research. Photosynthes Res 61: 181–191.

    Article  Google Scholar 

  64. Iida K, Inagaki J, Shinohara K et al (2005) Absorption and Fluorescence Spectra and AFM Observation of the Light-Harvesting 1 Complex on a Mica Substrate Refolded from the Subunit Light-Harvesting 1 Complexes of Photosynthetic Bacteria Rhodospirillum rubrum. Langmuir 21: 3069-3075.

    Article  Google Scholar 

  65. Arteni A A, Ajlani G, Boekema E J (2009) Structural organisation of phycobilisomes from Synechocystis sp. strain PCC6803 and their interaction with the membrane. Biochimica et Biophysica Acta 1787: 272–279.

    Article  Google Scholar 

Download references

Acknowledgment

A.B. acknowledges the generous financial support from the Swiss National Science Foundation no° 206021-121306, the Swiss Federal Office of Energy contract no° 152316-101883 and 153613-102809 (for D.K.B.), SCIEX with Hungary #—10.013 (Sciex-NMSch—The Swiss contribution to EU enlargement) and the VELUX Foundation project no° 790 (both for K.G.-S.), Swiss National Science Foundation no° NANOTERA 20NA21-145936 (for D.K.B) and Swiss South African Joint Research project no° SNF IZLSZ2.149031, and EU COST Action TD1102 “PHOTOTECH.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Braun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bora, D.K., Braun, A., Gajda-Schrantz, K. (2015). Solar Photoelectrochemical Water Splitting with Bioconjugate and Bio-Hybrid Electrodes. In: Rozhkova, E., Ariga, K. (eds) From Molecules to Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13800-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13800-8_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13799-5

  • Online ISBN: 978-3-319-13800-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics