Skip to main content

Part of the book series: Springer Series in Computational Mathematics ((SSCM,volume 47))

  • 5172 Accesses

Abstract

Infinite-dimensional minimization problems without convexity properties may lead to the nonexistence of solutions, but arise as simplified mathematical descriptions of crystalline phase transitions that enable the shape-memory effect of smart materials. The ill-posed minimization problems capture important effects and relaxation theories define well-posed modifications of the functionals. The problems related to direct numerical treatment of the original formulations and the convergence and numerical solution of discretizations of its modifications are investigated in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ball, J.M.: A version of the fundamental theorem for young measures. In: PDEs and Continuum Models of Phase Transitions (Nice, 1988). Lecture Notes in Physics, vol. 344, pp. 207–215. Springer, Berlin (1989). http://dx.doi.org/10.1007/BFb0024945

  2. Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100(1), 13–52 (1987). http://dx.doi.org/10.1007/BF00281246

  3. Bartels, S.: Linear convergence in the approximation of rank-one convex envelopes. M2AN Math. Model. Numer. Anal. 38(5), 811–820 (2004). http://dx.doi.org/10.1051/m2an:2004040

  4. Bartels, S.: Reliable and efficient approximation of polyconvex envelopes. SIAM J. Numer. Anal. 43(1), 363–385 (2005). http://dx.doi.org/10.1137/S0036142903428840

  5. Bartels, S., Prohl, A.: Multiscale resolution in the computation of crystalline microstructure. Numer. Math. 96(4), 641–660 (2004). http://dx.doi.org/10.1007/s00211-003-0483-8

  6. Carstensen, C.: Numerical analysis of microstructure. In: Theory and Numerics of Differential Equations (Durham, 2000), Universitext, pp. 59–126. Springer, Berlin (2001)

    Google Scholar 

  7. Chipot, M., Müller, S.: Sharp energy estimates for finite element approximations of nonconvex problems. In: Variations of domain and Free-Boundary Problems in Solid Mechanics (Paris, 1997). Solid Mechanics and Its Applications, vol. 66, pp. 317–325. Kluwer, Dordrecht (1999)

    Google Scholar 

  8. Dacorogna, B.: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences, vol. 78, 2nd edn. Springer, New York (2008)

    Google Scholar 

  9. Dolzmann, G.K., Walkington, N.J.: Estimates for numerical approximations of rank one convex envelopes. Numer. Math. 85(4), 647–663 (2000). http://dx.doi.org/10.1007/PL00005395

  10. Kohn, R.V.: The relaxation of a double-well energy. Contin. Mech. Thermodyn. 3(3), 193–236 (1991). http://dx.doi.org/10.1007/BF01135336

  11. Kohn, R.V., Müller, S.: Surface energy and microstructure in coherent phase transitions. Commun. Pure Appl. Math. 47(4), 405–435 (1994). http://dx.doi.org/10.1002/cpa.3160470402

  12. Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems. I–III. Commun. Pure Appl. Math. 39(3), 113–137, 139–182, 353–377 (1986). http://dx.doi.org/10.1002/cpa.3160390305

  13. Luskin, M.: On the computation of crystalline microstructure. In: Acta Numerica, vol. 5, pp. 191–257. Cambridge University Press, Cambridge (1996). http://dx.doi.org/10.1017/S0962492900002658

  14. Müller, S.: Variational models for microstructure and phase transitions. In: Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996). Lecture Notes in Mathematics, vol. 1713, pp. 85–210. Springer, Berlin (1999)

    Google Scholar 

  15. Pedregal, P.: Variational Methods in Nonlinear Elasticity. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)

    Google Scholar 

  16. Young, L.C.: Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III 30, 212–234 (1937)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sören Bartels .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bartels, S. (2015). Nonconvexity and Microstructure. In: Numerical Methods for Nonlinear Partial Differential Equations. Springer Series in Computational Mathematics, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-13797-1_9

Download citation

Publish with us

Policies and ethics