Nonconvexity and Microstructure

  • Sören BartelsEmail author
Part of the Springer Series in Computational Mathematics book series (SSCM, volume 47)


Infinite-dimensional minimization problems without convexity properties may lead to the nonexistence of solutions, but arise as simplified mathematical descriptions of crystalline phase transitions that enable the shape-memory effect of smart materials. The ill-posed minimization problems capture important effects and relaxation theories define well-posed modifications of the functionals. The problems related to direct numerical treatment of the original formulations and the convergence and numerical solution of discretizations of its modifications are investigated in this chapter.


  1. 1.
    Ball, J.M.: A version of the fundamental theorem for young measures. In: PDEs and Continuum Models of Phase Transitions (Nice, 1988). Lecture Notes in Physics, vol. 344, pp. 207–215. Springer, Berlin (1989).
  2. 2.
    Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100(1), 13–52 (1987).
  3. 3.
    Bartels, S.: Linear convergence in the approximation of rank-one convex envelopes. M2AN Math. Model. Numer. Anal. 38(5), 811–820 (2004).
  4. 4.
    Bartels, S.: Reliable and efficient approximation of polyconvex envelopes. SIAM J. Numer. Anal. 43(1), 363–385 (2005).
  5. 5.
    Bartels, S., Prohl, A.: Multiscale resolution in the computation of crystalline microstructure. Numer. Math. 96(4), 641–660 (2004).
  6. 6.
    Carstensen, C.: Numerical analysis of microstructure. In: Theory and Numerics of Differential Equations (Durham, 2000), Universitext, pp. 59–126. Springer, Berlin (2001)Google Scholar
  7. 7.
    Chipot, M., Müller, S.: Sharp energy estimates for finite element approximations of nonconvex problems. In: Variations of domain and Free-Boundary Problems in Solid Mechanics (Paris, 1997). Solid Mechanics and Its Applications, vol. 66, pp. 317–325. Kluwer, Dordrecht (1999)Google Scholar
  8. 8.
    Dacorogna, B.: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences, vol. 78, 2nd edn. Springer, New York (2008)Google Scholar
  9. 9.
    Dolzmann, G.K., Walkington, N.J.: Estimates for numerical approximations of rank one convex envelopes. Numer. Math. 85(4), 647–663 (2000).
  10. 10.
    Kohn, R.V.: The relaxation of a double-well energy. Contin. Mech. Thermodyn. 3(3), 193–236 (1991).
  11. 11.
    Kohn, R.V., Müller, S.: Surface energy and microstructure in coherent phase transitions. Commun. Pure Appl. Math. 47(4), 405–435 (1994).
  12. 12.
    Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems. I–III. Commun. Pure Appl. Math. 39(3), 113–137, 139–182, 353–377 (1986).
  13. 13.
    Luskin, M.: On the computation of crystalline microstructure. In: Acta Numerica, vol. 5, pp. 191–257. Cambridge University Press, Cambridge (1996).
  14. 14.
    Müller, S.: Variational models for microstructure and phase transitions. In: Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996). Lecture Notes in Mathematics, vol. 1713, pp. 85–210. Springer, Berlin (1999)Google Scholar
  15. 15.
    Pedregal, P.: Variational Methods in Nonlinear Elasticity. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)Google Scholar
  16. 16.
    Young, L.C.: Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III 30, 212–234 (1937)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Abteilung für Angewandte MathematikAlbert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations