Advertisement

Harmonic Maps

  • Sören BartelsEmail author
Chapter
Part of the Springer Series in Computational Mathematics book series (SSCM, volume 47)

Abstract

Partial differential equations with a nonlinear pointwise equality constraint arise in the mathematical modeling of liquid crystals and ferromagnets. The solutions are vector fields that describe the orientation of the molecules or the magnetization field. A simple model problem defines harmonic maps in the sphere as minimizers of the Dirichlet energy subject to a pointwise unit-length constraint. Lowest-order conforming finite element methods prohibit imposing the constraint everywhere and limited regularity and uniqueness properties of harmonic maps require a careful numerical treatment. The stability and convergence of iterative methods that employ linearizations and projections are proved, and short implementations are provided in this chapter. Extensions to approximating related evolution problems, such as the harmonic map heat flow and wave maps are discussed.

References

  1. 1.
    Alouges, F.: A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34(5), 1708–1726 (1997). http://dx.doi.org/10.1137/S0036142994264249
  2. 2.
    Alouges, F.: A new finite element scheme for Landau-Lifchitz equations. Discret. Contin. Dyn. Syst. Ser. S 1(2), 187–196 (2008). http://dx.doi.org/10.3934/dcdss.2008.1.187
  3. 3.
    Bartels, S.: Stability and convergence of finite-element approximation schemes for harmonic maps. SIAM J. Numer. Anal. 43(1), 220–238 (2005). http://dx.doi.org/10.1137/040606594
  4. 4.
    Bartels, S.: Semi-implicit approximation of wave maps into smooth or convex surfaces. SIAM J. Numer. Anal. 47(5), 3486–3506 (2009). http://dx.doi.org/10.1137/080731475
  5. 5.
    Bartels, S.: Numerical analysis of a finite element scheme for the approximation of harmonic maps into surfaces. Math. Comput. 79(271), 1263–1301 (2010). http://dx.doi.org/10.1090/S0025-5718-09-02300-X
  6. 6.
    Bartels, S.: Projection-free approximation of geometrically constrained partial differential equations. Math. Comput. (2013). To appearGoogle Scholar
  7. 7.
    Bartels, S., Prohl, A.: Constraint preserving implicit finite element discretization of harmonic map flow into spheres. Math. Comput. 76(260), 1847–1859 (2007). http://dx.doi.org/10.1090/S0025-5718-07-02026-1
  8. 8.
    Chang, K.C., Ding, W.Y., Ye, R.: Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Differ. Geom. 36(2), 507–515 (1992). http://projecteuclid.org/getRecord?id=euclid.jdg/1214448751
  9. 9.
    Hélein, F.: Harmonic Maps, Conservation Laws and Moving Frames. Cambridge Tracts in Mathematics, vol. 150, 2nd edn. Cambridge University Press, Cambridge (2002)Google Scholar
  10. 10.
    Lin, S.Y., Luskin, M.: Relaxation methods for liquid crystal problems. SIAM J. Numer. Anal. 26(6), 1310–1324 (1989). http://dx.doi.org/10.1137/0726076
  11. 11.
    Rivière, T.: Conservation laws for conformally invariant variational problems. Invent. Math. 168(1), 1–22 (2007). http://dx.doi.org/10.1007/s00222-006-0023-0
  12. 12.
    Struwe, M.: Variational Methods, 4th edn. Springer, Berlin (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Abteilung für Angewandte MathematikAlbert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations