Advertisement

The Allen–Cahn Equation

  • Sören BartelsEmail author
Chapter
Part of the Springer Series in Computational Mathematics book series (SSCM, volume 47)

Abstract

The mathematical description of phase separation and melting processes is often based on phase field models. These descriptions define a phase field variable that specifies particular phases as the solution of a semilinear parabolic partial differential equation. A small parameter that defines the width of the interfaces between different phases enters classical stability estimates in a critical way, and refined arguments are required to improve this dependence. Applying those estimates to analyzing approximation schemes for the simplest case of the Allen–Cahn equation in terms of a priori and a posteriori error estimates is carried out. The stability of various implicit and semi-implicit time-stepping schemes is discussed.

References

  1. 1.
    Alikakos, N.D., Fusco, G.: Slow dynamics for the Cahn-Hilliard equation in higher space dimensions. I. Spectral estimates. Commun. Partial Differ Equ 19(9–10), 1397–1447 (1994). http://dx.doi.org/10.1080/03605309408821059
  2. 2.
    Barrett, J.W., Blowey, J.F.: An error bound for the finite element approximation of the Cahn-Hilliard equation with logarithmic free energy. Numer. Math. 72(1), 1–20 (1995). http://dx.doi.org/10.1007/s002110050157
  3. 3.
    Bartels, S., Müller, R., Ortner, C.: Robust a priori and a posteriori error analysis for the approximation of Allen-Cahn and Ginzburg-Landau equations past topological changes. SIAM J. Numer. Anal. 49(1), 110–134 (2011). http://dx.doi.org/10.1137/090751530
  4. 4.
    Chen, X.: Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interfaces. Commun. Partial Differ Equ 19(7–8), 1371–1395 (1994). http://dx.doi.org/10.1080/03605309408821057
  5. 5.
    Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005). http://dx.doi.org/10.1017/S0962492904000224
  6. 6.
    Elliott, C.M., French, D.A.: Numerical studies of the Cahn-Hilliard equation for phase separation. IMA J. Appl. Math. 38(2), 97–128 (1987). http://dx.doi.org/10.1093/imamat/38.2.97
  7. 7.
    Emmerich, H.: The Diffuse Interface Approach in Materials Science. Lecture Notes in Physics, vol. M 73. Springer, Berlin (2003)Google Scholar
  8. 8.
    Feng, X., Prohl, A.: Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math. 94(1), 33–65 (2003). http://dx.doi.org/10.1007/s00211-002-0413-1
  9. 9.
    Kessler, D., Nochetto, R.H., Schmidt, A.: A posteriori error control for the Allen-Cahn problem: circumventing Gronwall’s inequality. M2AN Math. Model. Numer. Anal. 38(1), 129–142 (2004). http://dx.doi.org/10.1051/m2an:2004006
  10. 10.
    Nochetto, R.H., Verdi, C.: Convergence past singularities for a fully discrete approximation of curvature-driven interfaces. SIAM J. Numer. Anal. 34(2), 490–512 (1997). http://dx.doi.org/10.1137/S0036142994269526
  11. 11.
    Penrose, O., Fife, P.C.: Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Phys. D 43(1), 44–62 (1990). http://dx.doi.org/10.1016/0167-2789(90)90015-H

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Abteilung für Angewandte MathematikAlbert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations