Advertisement

Elastoplasticity

  • Sören BartelsEmail author
Chapter
Part of the Springer Series in Computational Mathematics book series (SSCM, volume 47)

Abstract

Solid materials react in an elastic way to sufficiently small forces, but when these exceed a threshold, remaining plastic deformations occur. Simple mathematical descriptions lead to nonsmooth evolution problems that can be approximated by sequences of convex minimization problems. Related quasioptimal a priori and a posteriori error estimates for low-order finite element methods are derived. The numerical implementation requires solving a nonlinear, nonsmooth equation at every time step whose realization is based on eliminating the plastic strain. Short codes that realize different types of plastic material behavior are provided.

References

  1. 1.
    Alberty, J., Carstensen, C., Zarrabi, D.: Adaptive numerical analysis in primal elastoplasticity with hardening. Comput. Methods Appl. Mech. Eng. 171(3–4), 175–204 (1999). http://dx.doi.org/10.1016/S0045-7825(98)00210-2
  2. 2.
    Bartels, S.: Quasi-optimal error estimates for implicit discretizations of rate-independent evolutions. SIAM J. Numer. Anal. 52(2), 708–716 (2014). http://dx.doi.org/10.1137/130933964
  3. 3.
    Bartels, S., Mielke, A., Roubíček, T.: Quasi-static small-strain plasticity in the limit of vanishing hardening and its numerical approximation. SIAM J. Numer. Anal. 50(2), 951–976 (2012). http://dx.doi.org/10.1137/100819205
  4. 4.
    Dal Maso, G., DeSimone, A., Mora, M.G.: Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal. 180(2), 237–291 (2006). http://dx.doi.org/10.1007/s00205-005-0407-0
  5. 5.
    Han, W., Reddy, B.D.: Plasticity. Interdisciplinary Applied Mathematics, 2nd edn. Springer, New York (2013) Mathematical Theory and Numerical AnalysisGoogle Scholar
  6. 6.
    Johnson, C.: On plasticity with hardening. J. Math. Anal. Appl. 62(2), 325–336 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Mielke, A.: Evolution of Rate-Independent Systems. In: Evolutionary Equations. Vol. II, Handbook of Differential Equations, pp. 461–559. Elsevier/North-Holland, Amsterdam (2005)Google Scholar
  8. 8.
    Sauter, M., Wieners, C.: On the superlinear convergence in computational elasto-plasticity. Comput. Methods Appl. Mech. Eng. 200(49–52), 3646–3658 (2011). http://dx.doi.org/10.1016/j.cma.2011.08.011
  9. 9.
    Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Interdisciplinary Applied Mathematics, vol. 7. Springer, New York (1998)zbMATHGoogle Scholar
  10. 10.
    Stefanelli, U.: A variational principle for hardening elastoplasticity. SIAM J. Math. Anal. 40(2), 623–652 (2008). http://dx.doi.org/10.1137/070692571

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Abteilung für Angewandte MathematikAlbert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations