Variability Management

  • Georg RockEmail author
  • Karsten Theis
  • Patrick Wischnewski


The global market, different and changing environmental laws, the customer wish for individualization, time-to-market, product costs, and the pressure on manufacturers to discover new product niches, to name only a few variability drivers, result in an ever increasing number of product variants in nearly all engineering disciplines as, for example, in car manufacturing. Mastering the related increasing product complexity throughout the whole product lifecycle is and remains one of the key advantages in competition for the future. Currently for a manufacturer, as for any other discipline, it is no option not to invest in an efficient and effective variability handling machinery able to cope with the arising challenges. Not only the task to invent, develop, introduce and manage new variants is important but also to decide which variant to develop, which to remove and which to not develop at all. The consequences of such decisions with respect to product-line variability have to be computed based on formalized bases such that an optimized product variability can assure on the one hand customer satisfaction and on the other hand cost reduction within the variability-related engineering processes. This chapter presents current research in the field of product variability configuration, analysis and visualisation. It presents solution sketches based on formal logic that were illustrated by some real world examples.


Product variety Mass customisation Product configuration Complexity management Variability management Formal variability analysis 


  1. 1.
    Hüttenrauch M, Baum T (2008) Effiziente Vielfalt Die dritte Revolution in der Automobilindustrie. Springer, BerlinGoogle Scholar
  2. 2.
    Elgh F (2014) Automated engineer-to-order systems. A task oriented approach to enable traceability of design rationale. Int J Agile Syst Manag 7(3–4):324–347CrossRefGoogle Scholar
  3. 3.
    McLay A (2014) Re-reengineering the dream: agility as competitive adaptability. Int J Agile Syst Manag 7(2):101–115CrossRefMathSciNetGoogle Scholar
  4. 4.
    Alguezaui S, Filieri R (2014) A knowledge-based view of the extending enterprise for enhancing a collaborative innovation advantage. Int J Agile Syst Manag 7(2):116–131CrossRefGoogle Scholar
  5. 5.
    Chang D, Chen CH (2014) Understanding the influence of customers on product innovation Int J Agile Syst Manag 7(3–4):348–364Google Scholar
  6. 6.
    Hu S, Ko J, Weyand L, ElMaraghy H, Lien T, Koren Y, Bley H, Chryssolouris G, Nasr N, Shpitalni M (2011) Assembly system design and operations for product variety. CIRP Ann Manuf Technol 60(2):715–733CrossRefGoogle Scholar
  7. 7.
    Wallis R, Stjepandić J, Rulhoff S, Stromberger F, Deuse J (2014) Intelligent utilization of digital manufacturing data in modern product emergence processes. In: Cha J et al (eds) Moving integrated product development to service clouds in global economy. Proceedings of the 21st ISPE Inc. international conference on concurrent engineering. IOS Press, Amsterdam, 2014, pp 261–270Google Scholar
  8. 8.
    Kretschmer R, Rulhoff S, Stjepandić J (2014) Design for assembly in series production by using data mining methods. In: Cha J et al. (eds.) Moving integrated product development to service clouds in global economy. Proceedings of the 21st ISPE Inc. international conference on concurrent engineering. IOS Press, Amsterdam, 2014, pp 379–388Google Scholar
  9. 9.
    ElMaraghy H, Schuh G, ElMaraghy W, Piller F, Schönsleben P, Tseng M, Bernard A (2013) Product variety management. CIRP Ann Manuf Technol 62(2):629–652CrossRefGoogle Scholar
  10. 10.
    ElMaraghy H, Azab A, Schuh G, Pulz C (2009) Managing variations in products, processes and manufacturing systems. CIRP Ann Manuf Technol 58(1):441–446CrossRefGoogle Scholar
  11. 11.
    ElMaraghy W, ElMaraghy H, Tomiyama T, Monostori L (2012) Complexity in engineering design and manufacturing. CIRP Ann Manuf Technol 61(2):793–814CrossRefGoogle Scholar
  12. 12.
    Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS (1990) Feature-oriented domain analysis (foda) feasibility study. Technical report, DTIC DocumentGoogle Scholar
  13. 13.
    Pohl K, Böckle G, van der Linden F (2005) Software product line engineering—foundations, principles, and techniques. Springer, BerlinzbMATHGoogle Scholar
  14. 14.
    Haugen Ø, Wasowski A, Czarnecki K (2013) Cvl: common variability language. In: Kishi T, Jarzabek S, Gnesi S (eds) Proceedings of the 17th international software product line conference. ACM, New York, p 277CrossRefGoogle Scholar
  15. 15.
    Nestor D, O’Malley L, Quigley AJ, Sikora E, Thiel S (2007) Visualisation of variability in software product line engineering. In: Pohl K, Heymans P, Kang KC, Metzger A (eds) 1st International workshop on variability modelling of software-intensive systems (VAMOS 2007). Accessed 20 Aug 2014
  16. 16.
    Heuer A, Lauenroth K, Müller M, Scheele JN (2010) Towards effective visual modeling of complex software product lines. In: Botterweck G, Jarzabek S, Kishi T, Lee J, Livengood S (eds.) Software product lines: going beyond: Proceedings of the 14th international software product line conference, pp 229–238, SPLC 2010. Jeju Island, Sep 13–17 2010, Springer, BerlinGoogle Scholar
  17. 17.
    Botterweck G, Thiel S, Nestor D, bin Abid S, Cawley C (2008) Visual tool support for configuring and understanding software product lines. In: Geppert B, Pohl K (eds) Proceedings of the 12th international software product line conference, SPLC 2008. IEEE Computer Society, Los Alamitos, pp 77–86CrossRefGoogle Scholar
  18. 18.
    Cawley C, Nestor D, Preußner A, Botterweck G, Thiel S (2008) Interactive visualisation to support product configuration in software product lines. In: Heymans P, Kang KC, Metzger A, Pohl K (eds.) 2nd international workshop on variability modelling of software-intensive systems (VAMOS 2008). Accessed 20 Aug 2014
  19. 19.
    Schneeweiss D, Botterweck G (2010) Using flow maps to visualize product attributes during feature configuration. In: Botterweck G, Jarzabek S, Kishi T, Lee J, Livengood S (eds) Software product lines: going beyond. Proceedings of the 14th international software product line conference, pp 219–228, SPLC 2010. Jeju Island, 13–17 Sep 2010, Springer, BerlinGoogle Scholar
  20. 20.
    Czarnecki RK, Helsen S, Eisenecker UW (2004) Staged configuration using feature models. In: Nord RL (ed) Software product lines: 3rd international conference, SPLC 2004, 30 Aug–2 Sep 2004, Boston. vol 3154 LNCS, pp 266–283, Springer, Berlin. Accessed 20 Aug 2014
  21. 21.
    Mendonca M, Wasowski A, Czarnecki K (2009) SAT-based analysis of feature models is easy. In: Muthig D, McGregor JD (eds) 13th international software product line conference, SPLC 2009, 24–28 Aug 2009. San Francisco, ACM international conference proceeding series, 446:231–240, ACM. Accessed 20 Aug 2014
  22. 22.
    Antkiewicz M, Czarnecki K (2004) FeaturePlugin: feature modeling plug-in for eclipse. In: Burke G (ed.) Proceedings of the 2004 OOPSLA workshop on eclipse technology eXchange. pp 67–72, ACM. Accessed 20 Aug 2014
  23. 23.
    Capilla R, Bosch J, Kang KC (2013) Systems and software variability management: concepts, tools and experiences. Springer, BerlinCrossRefGoogle Scholar
  24. 24.
    Biere A, Heule M, van Maaren H, Walsh T (2009) Handbook of satisfiability. Frontiers in artificial intelligence and applications, vol. 185. IOS Press, AmsterdamGoogle Scholar
  25. 25.
    Kang KC, Kim S, Lee J, Kim K, Shin E, Huh M (1998) FORM: a feature-oriented reuse method with domain-specific reference architectures. Ann Softw Eng 5:143–168CrossRefGoogle Scholar
  26. 26.
    Benavides D, Segura S, Ruiz-Cortes A (2010) Automated analysis of feature models 20 years later: a literature review. Inf Syst 35(6):615–636. Accessed 20 Aug 2014
  27. 27.
    Davis M, Putnam H (1960) A computing procedure for quantification theory. J ACM 7(3):201–215CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Nelson G, Oppen D (1979) Simplification by cooperating decision procedures. ACM Trans Program Lang Syst 1(2):245–257CrossRefzbMATHGoogle Scholar
  29. 29.
    Ganzinger H, Sofronie-Stokkermans V, Waldmann U (2006) Modular proof systems for partial functions with Evans equality. Inf Comput 204(10):1453–1492CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Nieuwenhuis R, Oliveras A, Tinelli C (2006) Solving sat and sat modulo theories: From an abstract davis–putnam–logemann–loveland procedure to dpll(t). J ACM 53:937–977, Nov 2006. Accessed 20 Aug 2014
  31. 31.
    Ihlemann C, Jacobs S, Sofronie-Stokkermans V (2008) On local reasoning in verification. In: Ramakrishnan CR, Rehof J (eds) Tools and algorithms for the construction and analysis of systems. 14th international conference, TACAS 2008, held as part of the joint european conferences on theory and practice of software, pp 265–281, ETAPS 2008, Budapest, March 29–April 6 2008. LNCS vol 4963, Springer, BerlinGoogle Scholar
  32. 32.
    Althaus E, Kruglov E, Weidenbach C (2009) Superposition modulo linear arithmetic sup(la). In: Ghilardi S, Sebastiani R (eds.) Frontiers of combining systems, Proceedings of 7th international symposium, pp 84–99, FroCoS 2009, Trento, September 16–18, 2009. LNCS vol 5749, Springer, BerlinGoogle Scholar
  33. 33.
    Waldmann U (2001). Superposition and chaining for totally ordered divisible abelian groups (Extended abstract). In: Gore R, Leitsch A, Nipkow T (eds) Automated reasoning : first international joint conference, pp 226–241, IJCAR 2001, LNAI, vol 2083, Siena, 2001. Springer, BerlinGoogle Scholar
  34. 34.
    Korovin K, Voronkov A (2007) Integrating linear arithmetic into superposition calculus. In: Duparc J, Henzinger TA (eds.) 21st international workshop, CSL 2007, 16th annual conference of the EACSL, Lausanne, Switzerland, 11–15 Sept 2007, vol 4646 LNCS, pp 223–237. Springer, Berlin. Accessed 20 Aug 2014
  35. 35.
    Weidenbach C, Dimova D, Fietzke A, Kumar R, Suda M, Wischnewski P (2009) SPASS Version 3.5. In: Schmidt R (ed) CADE—22, 22nd international conference on automated deduction, pp 140–145, Montreal, 2–7 Aug 2009, LNCS, vol 5663. Springer, BerlinGoogle Scholar
  36. 36.
    Suda M, Christoph W, Patrick W (2010) On the saturation of YAGO. IJCAR, pp 441–456Google Scholar
  37. 37.
    Sutcliffe Geoff, Suttner Christian B (2006) The state of CASC. AI Commun 19(1):35–48zbMATHMathSciNetGoogle Scholar
  38. 38.
    Larrosa J, Nieuwenhuis R, Oliveras A, Rodriguez-Carbonell E (2009) Branch and bound for boolean optimization and the generation of optimality certificates. In: Kullmann O (ed.) Theory and applications of satisfiability testing—SAT 2009, 12th international conference pp 453–466, SAT 2009, Swansea, 30 Jun–3 Jul 2009, vol 5584 of LNC, Springer, Berlin. Accessed 20 Aug 2014
  39. 39.
    Logic4Business GmbH:
  40. 40.
    BigLever Software, Inc.:
  41. 41.
    Pure systems GmbH.
  42. 42.
    Object Management Group.
  43. 43.
    Bontemps Y, Heymans P, Schobbens PY, Trigaux JC (2004) Semantics of FODA feature diagrams. In: Männistö T, Bosch J (eds.) Proceedings SPLC 2004 workshop on software variability management for product derivation—towards tool support, pp 48–58. Accessed 20 Aug 2014
  44. 44.
    Nieuwenhuis R, Oliveras A, Tinelli C (2004) Abstract DPLL and Abstract DPLL Modulo Theories. LPAR 2004:36–50Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Georg Rock
    • 1
    Email author
  • Karsten Theis
    • 2
  • Patrick Wischnewski
    • 3
  1. 1.Trier University of Applied SciencesTrierGermany
  2. 2.PROSTEP AGDarmstadtGermany
  3. 3.Logic4Business GmbHSaarbrückenGermany

Personalised recommendations