Product Lifecycle Management

  • Lutz LämmerEmail author
  • Mirko Theiss


Product lifecycle management (PLM) is widely understood as concept for the creation, storage, and retrieval of data, information and, ideally, knowledge throughout the lifecycle of a product from its conceptualization or inception to its disposal or recovery. PLM is seen in industry as one of the core concepts to fulfill a number of business requirements in the manufacturing industry with respect to completeness, high transparency, rapid accessibility, and high visibility of all product data during a product’s lifecycle. Those requirements are related to financial aspects such as cost management and revenue growth; to the product itself like innovation, time to market, quality, and high productivity; and to regulatory aspects such as compliance and documentation. PLM is implemented by deploying IT systems such as product data management (PDM) systems and induces a high level of interoperability of related applications. With PLM, industrial companies attempt to gain advantages in shorter cycles, lower costs, better quality by avoiding errors, and misunderstanding. After reviewing basic concepts and building blocks of PLM, we provide empirical evidence of implementation scenarios and use case studies for different integrations to build up PLM solutions. We have evaluated applications in automotive, aerospace and consumer electronic industries focused on engineering design, change management, simulation data management integration and communication with partners. Emphasis is on the organizational and IT implications and the business benefit of the provided solutions.


Product lifecycle management Product data management Engineering release Change management Access management 


  1. 1.
    Eigner M, Stelzer R (2009) Product lifecycle management. Springer, Dordrecht, Heidelberg, London, New YorkCrossRefGoogle Scholar
  2. 2.
    Abramovici M, Schulte S, Leszinski C (2005) Best practice strategien für die einführung von product lifecycle management. Ind Manage 21(2):47–50Google Scholar
  3. 3.
    Tavcar J, Potocnik U, Duhovnik J (2013) PLM used as a backbone for concurrent engineering in supply chain. In: Stjepandic J, Rock G, Bil C (eds) Concurrent engineering approaches for sustainable product development in a multi-disciplinary environment. Springer, London, pp 681–692CrossRefGoogle Scholar
  4. 4.
    Katzenbach A, Steiert H (2011) Engineering IT in der Automobilindustrie—Wege in die Zukunft. Informatik-Spektrum 34(1):7–19CrossRefGoogle Scholar
  5. 5.
    Silcher S, Seeberg B, Zahn E, Mitschang B (2013) A holistic management model for manufacturing companies and related IT support. Proc CIRP 7:175–180CrossRefGoogle Scholar
  6. 6.
    Schuh G (2006) Produktionsplanung und -steuerung: Grundlagen, Gestaltung und Konzepte. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  7. 7.
    Vajna S, Weber C, Bley H, Zeman K (2009) Integrated design engineering. Springer, BerlinGoogle Scholar
  8. 8.
    Stark J (2011) Product lifecycle management. Springer, LondonCrossRefGoogle Scholar
  9. 9.
    Dekkers R, Chang C, Kreutzfeldt J (2013) The interface between ‘‘product design and engineering’’ and manufacturing: a review of the literature and empirical evidence. Int J Prod Econ 144:316–333CrossRefGoogle Scholar
  10. 10.
    Abramovici M, Bellalouna F, Neubach M (2010) Delphi-Studie PLM 2020. Ind Manage 26(3):47–50Google Scholar
  11. 11.
    Abramovici M, Bellalouna F, Flohr M (2008) PLM für individuelle reale Produkte. Ind Manage 24(3):41–44Google Scholar
  12. 12.
    Sendler U (2009) Das PLM-Kompendium: Referenzbuch des Produkt-Lebenszyklus-Managements. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  13. 13.
    Schuh G, Assmus D, Zancul E (2006) Product structuring—the core discipline of product lifecycle management. In: 13th CIRP international conference on lifecycle engineering, pp 393–398Google Scholar
  14. 14.
    Mechlinski T (2007) Aktuelle Konzepte für die PDM-Integration. Produkt Daten Journal 14(1):34–37Google Scholar
  15. 15.
    Stiefel P (2010) Eine dezentrale Informations- und Kollaborationsarchitektur für die unternehmensübergreifende Produktentwicklung. PhD thesis, Technische Universität Clausthal, Clausthal-ZellerfeldGoogle Scholar
  16. 16.
    Grau M, Trautmann T (2007) Vendor-independent integration of CAD and CAE processes based on OMG PLM Services. NAFEMS 2006Google Scholar
  17. 17.
    OMG (2003) Model driven architecture guide. Accessed 23 Aug 2014
  18. 18.
    OMG (2004) Unified modeling language (UML), ISO/IEC 19501. Accessed 23 Aug 2014
  19. 19.
    OMG (2005) XML metadata interchange (XMI). Accessed 23 Aug 2014
  20. 20.
    Credle R (2008) SOA approach to enterprise integration for product lifecycle management. IBM, International Technical Support Organization, RaleighGoogle Scholar
  21. 21.
    OSLC (2013) Open Services for Lifecycle Collaboration Change Management Specification Version 2.0, Accessed 23 Aug 2014
  22. 22.
    OMG (2011) Product lifecycle management (PLM) services. Accessed 23 Aug 2014
  23. 23.
    ISO (2003) STEP 10303:214 core data for automotive mechanical design processesGoogle Scholar
  24. 24.
    ISO (2012) 14306: Industrial automation systems and integration—JT file format specification for 3D visualizationGoogle Scholar
  25. 25.
    Mas F, Menendez J, Oliva M, Rios J (2013) Collaborative engineering: an airbus case study. In: The manufacturing engineering society international conference, MESIC. Elsevier, pp 336–345Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.PROSTEP AGDarmstadtGermany

Personalised recommendations