Advertisement

Modularity and Supporting Tools and Methods

  • Josip Stjepandić
  • Egon Ostrosi
  • Alain-Jérôme Fougères
  • Martin Kurth
Chapter

Abstract

The paradigm of modularity has emerged as a relevant way to meet customer requirements with a wide range of variety and customisation of products, from unique to standard ones. The modularity area is becoming increasingly multidisciplinary, which implies holistic and articulated concurrent engineering approaches. Modularity can intersect technical aspects with the business aspects. The use of modular technology has wide-reaching implications for any design and development company that undertake to use this paradigm. This chapter provides a framework for understanding the modularity in the context of concurrent engineering. It involves design for modularity as well as management of modularity. Theoretical and practical development of consistent modular methods, their implementation technologies and tools for mass customization and product configuration are examined. Some of the possible implications of these developments are presented from concurrent engineering point of view. The current trend is drawn toward usage and integration of different technologies such as advanced CAD systems, product configurators, agent-based systems and PDM systems. Three particular application areas with industrial use cases are presented. A discussion about research challenges and further developments closes this chapter.

Keywords

Modularity Modular design Product variety Mass customisation Product platform Product configurator 

References

  1. 1.
    Manovich J (2001) The language of new media. MIT Press, CambridgeGoogle Scholar
  2. 2.
    Fodor JA (1983) The Modularity of Mind. MIT Press, CambridgeGoogle Scholar
  3. 3.
    Salvador F (2007) Toward a product system modularity construct: literature review and reconceptualization. IEEE Trans Eng Manag 54(2):219–240CrossRefGoogle Scholar
  4. 4.
    Sosa ME, Eppinger SD, Rowles CM (2007) A network approach to define modularity of components in complex products. J Mech Des 129(11):1118–1129CrossRefGoogle Scholar
  5. 5.
    Boysen N, Scholl A (2009) A general solution framework for component-commonality problems. Bus Res 2(1):86–106CrossRefGoogle Scholar
  6. 6.
    Jiao JR, Simpson TW (2007) Siddique Z (2007) Product family design and platform-based product development: a state-of-the-art review. J Intell Manuf 18:5–29CrossRefGoogle Scholar
  7. 7.
    Baldwin CY, Clark KB (2006) Modularity in the design of complex engineering systems. In: Braha D, Minai AA, Bar-Yam Y (eds) Complex engineered systems—science meets technology. Springer, Berlin, pp 175–205CrossRefGoogle Scholar
  8. 8.
    Kuntz L, Vera A (2007) Modular organization and hospital performance. Health Serv Manag Res Royal Soc Med Press 20(1):48–58CrossRefGoogle Scholar
  9. 9.
    Baldwin CY, Clark KB (1997) Managing in an age of modularity. Harvard Business Review 75(5): 84–93. Harvard Business School Publ. BostonGoogle Scholar
  10. 10.
    Pahl G, Beitz W, Feldhusen J, Grote KH (2007) Engineering design a systematic approach, 3rd edn. Springer, LondonGoogle Scholar
  11. 11.
    Priest JW, Sanchez JM (2001) Product development and design for manufacturing: a collaborative approach to producibility and reliability, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  12. 12.
    Ehrlenspiel K, Kiewert A, Lindemann U (2007) Cost-efficient design. Springer, BerlinCrossRefGoogle Scholar
  13. 13.
    Ong SK, Xu QL, Nee AYC (2008) Design reuse in product development modeling, analysis and optimization. World Scientific Publishing, SingaporeGoogle Scholar
  14. 14.
    Gawer A (2009) Platforms, markets and innovation. Edward Elgar Publishing, CheltenhamCrossRefGoogle Scholar
  15. 15.
    PillerFT Tseng MM (2010) Handbook of research in mass customization and personalization. World Scientific Publishing, SingaporeGoogle Scholar
  16. 16.
    Fogliatto FS, da Silveira GJC (2011) Mass customization: engineering and managing global operations. Springer, LondonCrossRefGoogle Scholar
  17. 17.
    Parry G, Graves A (2008) Build to order: the road to the 5-day car. Springer, LondonCrossRefGoogle Scholar
  18. 18.
    Hvam L, MortensenNH Riis J (2008) Product customization. Springer, LondonGoogle Scholar
  19. 19.
    Hüttenrauch M, Baum T (2008) Effiziente Vielfalt Die dritte Revolution in der Automobilindustrie. Springer, BerlinGoogle Scholar
  20. 20.
    Junge M (2005) Controlling modularer Produktfamilien in der Automobilindustrie. Deutscher Universitätsverlag, WiesbadenCrossRefGoogle Scholar
  21. 21.
    Wei G, Qin Y (2012) Framework of rapid product cost estimation based on the modular product family. In: Chen R (ed) Proceedings of 2011 international conference in electrics communication and automatic control. Springer, London, pp 9–14CrossRefGoogle Scholar
  22. 22.
    Rapp T (2010) Produktstrukturierung: Komplexitätsmanagement durch modulare Produktstrukturen und –plattformen, 2nd edn. Books On Demand, NorderstedtGoogle Scholar
  23. 23.
    Schuh G, Arnoscht J (2012) Aleksic S (2012) Systematische Gestaltung von Kommunalitäten in Produkten und Prozessen. ZFW, Jahrg 107(5):322–326Google Scholar
  24. 24.
    Daniilidis C, Enßlin V, EbenK, Lindemann U (2011) A classification framework for product modularization methods. ZFW, Proceedings of the 18th international conference on engineering design, ICED11Google Scholar
  25. 25.
    Suh NP (2001) Axiomatic design: advances and applications. Oxford University Press, OxfordGoogle Scholar
  26. 26.
    Holmberg G (2002) A modular approach to the aircraft product development capability. In: 23rd congress of international council of the aeronautical sciences, 8–13 Sep, 2002, Toronto. http://www.icas.org/icas_archive/icas2002/papers/652.pdf. Accessed 15 July 2013
  27. 27.
    Hirtz J, Stone RB, McAdams DA, Szykman S, Wood KL (2002) A functional basis for engineering design: reconciling and evolving previous efforts. Res Eng Des 13:65–82Google Scholar
  28. 28.
    Stone RB, Wood KL (2000) A functional basis for engineering design: reconciling and evolving previous efforts. Des Stud 21(1):5–31CrossRefGoogle Scholar
  29. 29.
    Eppinger SD, Browning TR (2012) Design structure matrix methods and applications. MIT Press, CambridgeGoogle Scholar
  30. 30.
    DSMweb.org. http://www.dsmweb.org/en/dsm.html. Accessed 15 July 2013
  31. 31.
    Cheng Q, Zhang G, Gu P, Shao X (2012) A product module identification approach based on axiomatic design and design structure matrix. Concurrent Eng 20:185CrossRefGoogle Scholar
  32. 32.
    Erixon G (1998) Modular function deployment–a method for product modularisation, PhD thesis, The Royal Institute of Technology, StockholmGoogle Scholar
  33. 33.
    Bergman B, de Mare J, Loren S, Svensson T (2009) Robust design methodology for reliability: exploring the effects of variation and uncertainty. Wiley, ChichesterCrossRefGoogle Scholar
  34. 34.
    Fischer JO (2008) Kostenbewusstes Konstruieren: Praxisbewährte Methoden und Informationssysteme für den Konstruktionsprozess. Springer, BerlinGoogle Scholar
  35. 35.
    Tiihonen J et al (1996) State of 10 cases in the Finnish industry. In: Tomiyama T, Mäntylä M, Finger S (eds) Knowledge intensive CAD. Chapman & Hall, London, pp 95–114Google Scholar
  36. 36.
    Brinkop A (2013) Marktführer Produktkonfiguration, Version 1.25, 4. Juli 2013. http://brinkop-consulting.com/guide/marktfuehrer.pdf. Accessed 15 Oct 2013
  37. 37.
    Ostrosi E, Fougères A-J, Ferney M (2012) Fuzzy Agents for product configuration in collaborative and distributed design process. Appl Soft Comput 12(8):2091–2105CrossRefGoogle Scholar
  38. 38.
    Deciu ER, Ostrosi E, Ferney M, Gheorghe M (2005) Configurable product design using multiple fuzzy models. J Eng Des 16(2–3):209–235CrossRefGoogle Scholar
  39. 39.
    Munoz-Hernandez S, Gomez-Perez JM (2005) Solving collaborative fuzzy agents problems with CLP (FD). LNCS 3350:187–202Google Scholar
  40. 40.
    Ostrosi E, Fougères AJ (2011) Optimization of product configuration assisted by fuzzy agents. Int J Interact Des Manuf 5(1):29–44CrossRefGoogle Scholar
  41. 41.
    Ostrosi E, Haxhiaj L, Ferney M (2008) Configuration grammars: powerful tools for product modelling in cad systems. In: Curran R et al (eds) Collaborative product and service life cycle management for a sustainable world, Proceedings of the 15th ISPE international conference on concurrent engineering (CE 2008). Springer, London, pp 451–459Google Scholar
  42. 42.
    Ostrosi E, Fougères AJ, Ferney M, Klein D (2012) A fuzzy configuration multi-agent approach for product family modelling in conceptual design. J Intell Manuf 23(6):2565–2586CrossRefGoogle Scholar
  43. 43.
    Fougères AJ, Ostrosi E (2013) Fuzzy agent-based approach for consensual design synthesis in product configuration. Int Comput Aided Eng 20:259–274Google Scholar
  44. 44.
    Falkner A, Haselböck A (2012) An overview of configurator use at Siemens, 2012 Oxford Configuration Workshop, 12–13 Jan, Oxford University. http://www.cs.ox.ac.uk/OxfordConfiguration/. Accessed 15 Oct 2013
  45. 45.
    Kübler AJ, Zengler C (2010) Model counting in product configuration. Workshop on logics for component configuration (LoCoCo 2010) EPTCS 29, pp 44–53Google Scholar
  46. 46.
    Batchelor J, Andersen HR (2012) Bridging the product configuration gap between PLM and ERP—an automotive case study. In: 19th international product development management conference, Manchester, 17–19 June 2012Google Scholar
  47. 47.
    Helo PT, Xu QL, Kyllonen SJ, Jiao RJ (2010) Integrated vehicle configuration system—connecting the domains of mass customization. Comput Ind 61(1):44–52CrossRefGoogle Scholar
  48. 48.
    Azamatov A, Lee JW, Byun YH (2011) Comprehensive aircraft configuration design tool for integrated product and process development. Adv Eng Softw 42(2011):35–49CrossRefzbMATHGoogle Scholar
  49. 49.
    Lino GmbH. http://www.lino.de/3d_layout.html. Accessed 15 Feb 2014
  50. 50.
    Elgh F (2014) Automated engineer-to-order systems A task oriented approach to enable traceability of design rationale. Int J Agile Syst Manag 7(3–4):324–347CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Josip Stjepandić
    • 1
  • Egon Ostrosi
    • 2
  • Alain-Jérôme Fougères
    • 2
  • Martin Kurth
    • 3
  1. 1.PROSTEP AGDarmstadtGermany
  2. 2.Université de Technologie de Belfort-MontbeliardBelfortFrance
  3. 3.RAYCE EURLLörrachGermany

Personalised recommendations