Advertisement

Digital Mock-up

  • Roberto Riascos
  • Laurent Levy
  • Josip Stjepandić
  • Arnulf Fröhlich
Chapter

Abstract

Product development in the mobility industry is characterized by extreme time-to-market, high product complexity, cost pressure and many geographically dispersed stakeholders. Thus, efficient control mechanisms are necessary to manage a seemingly unmanageable project successfully and to achieve a strong finish. Digital mock-up (DMU) serves, as a central validation instrument in such a complex scenario, not only to visualize spatially the current status of the virtual product but also to evaluate the project’s progress. In conjunction with a high-variant product structure, as it is the case in modern vehicles, the use of DMU makes the check of the spatial consistency of the overall product possible, taking over what today’s CAD and PDM systems alone are not capable of. Taking the function of the product into account, the result is the so-called functional DMU (FDMU) which aims at facilitating the direct experience of functions on the virtual model in the overall context of the product. While DMU offers a visual straightforward human interface for control, DMU creation, calculation and processes can be automated well, so that the spatial test (collision check, assembly check) can be performed for all conceivable product variants in batch during the night). Nevertheless, human intervention is still required for the solution of design conflicts. Although all current problems are not yet solved in the context of DMU, leading PLM vendors do offer powerful tools to support the DMU process. Due to its central role in the development process DMU is subject of intensive research and development for speeding up the process and to increase accuracy.

Keywords

Digital mock-up DMU CAD VR Product structure Product validation 

References

  1. 1.
    Alguezaui S, Filieri R (2014) A knowledge-based view of the extending enterprise for enhancing a collaborative innovation advantage. Int J Agile Syst Manage 7(2):116–131CrossRefGoogle Scholar
  2. 2.
    Aoyama H, Kimishima Y (2009) Mixed reality system for evaluating designability and operability of information appliances. Int J Ineract Des Manuf 3:157–164CrossRefGoogle Scholar
  3. 3.
    McLay A (2014) Re-reengineering the dream: agility as competitive adaptability. Int J Agile Syst Manage 7(2):101–115CrossRefMathSciNetGoogle Scholar
  4. 4.
    Mengoni M, Germani M (2006) Virtual reality systems and CE: how to evaluate the benefits. In: Ghodous P et al (eds) Leading the web in concurrent engineering. IOS Press, Amsterdam, pp 853–862Google Scholar
  5. 5.
    Stevenson M (2013) The role of services in flexible supply chains: an exploratory study. Int J Agile Syst Manage 6(4):307–323CrossRefGoogle Scholar
  6. 6.
    Valentini PP (2009) Interactive virtual assembling in augmented reality. Int J Interact Des Manuf 3:109–119Google Scholar
  7. 7.
    Jareño JJ (2009) Application of the engineering in the aeronautics. http://tv.uvigo.es/uploads/material/Video/5147/PRESEN-2009-12JJjare____o.pdf. Accessed 15 Nov 2013
  8. 8.
    Mart T, Cangelir C (2013) Lessons learned for better management of master geometry. In: Bernard A et al (eds) Product lifecycle management for society, IFIP advances in information and communication technology, vol 409. Springer, London, pp 712–721Google Scholar
  9. 9.
    Di Gironimo G, Patalano S, Tarallo A (2009) Innovative assembly process for modular train and feasibility analysis in virtual environment. Int J Interact Des Manuf 3:93–101CrossRefGoogle Scholar
  10. 10.
    Voss T (2008) Untersuchungen zur Beurteilungs- und Entscheidungssicherheit in virtuellen Umgebungen. PhD thesis, Technische Universität MünchenGoogle Scholar
  11. 11.
    Hudelmaier J (2003) Sichtanalyse im Pkw unter Berücksichtigung von Bewegung und individuellen Körpercharakteristika. PhD thesis, Technische Universität MünchenGoogle Scholar
  12. 12.
    Dierßen S (2002) Systemkopplung zur komponentenorientierten Simulation digitaler Produkte. PhD thesis, Eidgenössische Technische Hochschule ZürichGoogle Scholar
  13. 13.
    Deuschl M (2006) Gestaltung eines Prüffelds für die Fahrwerksentwicklung unter Berücksichtigung der virtuellen Produktentwicklung. PhD thesis, Technische Universität MünchenGoogle Scholar
  14. 14.
    Mendonça CH (2007) The system verification breakdown method. In: Loureiro G et al (eds) Complex systems concurrent engineering. Springer, London, pp 65–72Google Scholar
  15. 15.
    Verlinden J, Horváth I, Nam T-J (2009) Recording augmented reality experiences to capture design reviews. Int J Interact Des Manuf 3:189–200CrossRefGoogle Scholar
  16. 16.
    Hrimech H, Merienne F (2010) Interaction and evaluation tools for collaborative virtual environment. Int J Interact Des Manuf 4:149–156CrossRefGoogle Scholar
  17. 17.
    Ludwig L, Haurykiewicz J (2007) Collision checking analysis tool: discovering dynamic collisions in a modeling and simulation environment. Int J Interact Des Manuf 1:135–141CrossRefGoogle Scholar
  18. 18.
    Mas F, Gómez A, Menéndez JL, José Ríos J (2013) Proposal for the conceptual design of aeronautical final assembly lines based on the Industrial Digital Mock-Up concept. In: Bernard A et al (eds) Product lifecycle management for society, IFIP advances in information and communication technology, vol 409. Springer, London, pp 10–19Google Scholar
  19. 19.
    Dolezal WR (2008) Success factors for digital mock-ups (DMU) in complex aerospace product development. PhD thesis, Technische Universität MünchenGoogle Scholar
  20. 20.
    Zachmann G (2000) virtual reality in assembly simulation—collision detection, simulation algorithms and interaction techniques. PhD thesis, TU DarmstadtGoogle Scholar
  21. 21.
    Raffaeli R, Cesetti A, Angione G, Lattanzi L, Longhi S (2012) Virtual planning for autonomous inspection of electromechanical products. Int J Interact Des Manuf 6:215–231CrossRefGoogle Scholar
  22. 22.
    Kanai S, Iyoda D, Endo Y, Sakamoto H, Kanatani N (2012) Appearance preserving simplification of 3D CAD model with large-scale assembly structures. Int J Interact Des Manuf 6:139–154CrossRefGoogle Scholar
  23. 23.
    Valentini PP (2011) Interactive cable harnessing in augmented reality. Int J Interact Des Manuf 5:45–53Google Scholar
  24. 24.
    Handschuh S, Dotzauer R, Fröhlich A (2012) Standardized formats for visualization—application and development of JT. In: Stjepandić J et al (eds) 19th ISPE international conference on concurrent engineering, concurrent engineering approaches for sustainable product development in a multi-disciplinary environment. Springer, London, pp 741–752Google Scholar
  25. 25.
    Rakotomamonjya X (2007) Experimentation of an enterprise architecture in aerospace electrical engineering process. In: Loureiro G et al (eds) Complex systems concurrent engineering. Springer, London, pp 683–691Google Scholar
  26. 26.
    Balasubramarian B (2008) Entwicklungsprozess für Kraftfahrzeuge unter den Einflüssen der Globalisierung und Lokalisierung. In: Schindler V, Sievers I (eds) Forschung für das Auto von morgen. Springer, Berlin, pp 359–372Google Scholar
  27. 27.
    Fukuda S, Lulić Z, Stjepandić J (2013) FDMU—functional spatial experience beyond DMU? In: Bil C et al (eds) Proceedings of 20th ISPE international conference on concurrent engineering. IOS Press, Amsterdam, pp 431–440Google Scholar
  28. 28.
    Biahmou A, Fröhlich A, Stjepandić J (2013) Improving interoperability in mechatronic product development. In: Proceedings of PLM 10—international conference on product lifecycle management. Inderscience, Olney, pp 510–521Google Scholar
  29. 29.
    N N, Functional mockup interface (FMI)—version 1.0. https://www.fmi-standard.org/downloads. Accessed 15 Nov 2013
  30. 30.
    Blochwitz T et al (2012) Functional mockup interface 2.0: the standard for tool independent exchange of simulation models. In: 9th international modelica conference, Munich, 3–5 Sep 2012. https://trac.fmi-standard.org/export/700/branches/public/docs/Modelica2012/ecp12076173_BlochwitzOtter.pdf. Accessed 15 Nov 2013
  31. 31.
    Stork A et al (2009) FunctionalDMU: towards experiencing the behavior of mechatronic systems in DMU. Fraunhofer IGD, Darmstadt. http://www.igd.fraunhofer.de/sites/default/files/FDMU%20Pr%C3%A4sentation.pdf. Accessed 15 Nov 2013
  32. 32.
    Brüning HC, Liese H (2013) Reliable methods for the virtual car design process in the conceptual Development of passenger cars at volkswagen AG. In: ProSTEP iViP symposium. Hannover, 16–17 April 2013Google Scholar
  33. 33.
    Geißel O (2012) AMMU automotive mixed mock-up. Konzeption einer neuen Entwicklungsplattform für die Automobilindustrie. PhD thesis, Universität StuttgartGoogle Scholar
  34. 34.
    Cheutet V, Léon J-C, Catalano CE, Giannini F, Monti M, Falcidieno B (2007). Preserving car stylists’ design intent through an ontology. Int J Interact Des Manuf (2008) 2:9–16Google Scholar
  35. 35.
    Baladi M, Vitali H, Fadel G, Summers J, Duchowski A (2008) A taxonomy for the design and evaluation of networked virtual environments: its application to collaborative design. Int J Interact Des Manuf 2:17–32CrossRefGoogle Scholar
  36. 36.
    Brown J (2012) Social business collaboration and the product lifecycle: combining the collaborative power of social media with PLM. Tech-Clarity Inc. http://www.tech-clarity.com/documents/Tech-Clarity_IssueinFocus_Social_Business_PLM.pdf. Accessed 9 July 2013
  37. 37.
    Doumit N, Huet G (2013) Fortin C (2013) The role of enterprise social media in the development of aerospace industry best practices. In: Bernard A et al (eds) Product lifecycle management for society, IFIP advances in information and communication technology, vol 409. Springer, London, pp 356–364Google Scholar
  38. 38.
    Huet G, Zeng Y, Fortin C (2012) Theoretical foundations supporting the implementation of complementary information structures across the life of a product. In: ASME 2012 11th biennial conference on engineering systems design and analysis. Nantes, France, 2 July 2012Google Scholar
  39. 39.
    Aronoffa M, Messinaa J (2007) Collaborative augmented reality for better standards. In: Loureiro G et al (eds) Complex systems concurrent engineering. Springer, London, pp 479–486CrossRefGoogle Scholar
  40. 40.
    Dineva E, Bachmann A, Moerland E, Nagel B, Gollnick V (2014) New methodology to explore the role of visualisation in aircraft design tasks: an empirical study. Int J Agile Syst Manag 7(3–4):220–241Google Scholar
  41. 41.
    Raffaeli R, Mengoni M, Germani M, Mandorli F (2012). Off-line view planning for the inspection of mechanical parts. Int J Interact Des Manuf 1:1–12Google Scholar
  42. 42.
    Herlem G, Ducellier G, Adragna PA, Durupt A, Remy S (2013) A reverse engineering method for DMU maturity management: use of a functional reeb graph. In: Bernard A et al (eds) Product lifecycle management for society, IFIP advances in information and communication technology, vol 409. Springer, London, pp 422–431Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Roberto Riascos
    • 1
  • Laurent Levy
    • 2
  • Josip Stjepandić
    • 1
  • Arnulf Fröhlich
    • 1
  1. 1.PROSTEP AGDarmstadtGermany
  2. 2.Airbus SASToulouseFrance

Personalised recommendations