Skip to main content

Bone Morphogenetic Protein 7: An Emerging Therapeutic Target for Sepsis-associated Acute Kidney Injury

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2015

Part of the book series: Annual Update in Intensive Care and Emergency Medicine 2015 ((AUICEM,volume 2015))

  • 2517 Accesses

Abstract

Acute kidney injury (AKI) is a common organ dysfunction with poor prognosis. A recent study found that hospital mortality for adults with AKI was 23.9%, and 13.8% in children [1]. A prospective study of patients in the intensive care unit (ICU) with severe AKI (most receiving dialysis) reported a 60% hospital mortality rate, and 13.8% of survivors were dialysis-dependent at the time of hospital discharge [2]. Researchers have focused on preventing AKI and promoting its recovery; however, this has been difficult because the pathophysiological mechanisms responsible for AKI are still unclear.

Transforming growth factor-β (TGF-β)1 is believed to be an important molecule in AKI pathogenesis, especially for fibrosis, and its expression is decreased in chronic kidney disease (CKD) and late AKI [3]. It is generally believed that downregulation of TGF-β1 inhibits the process of fibrosis, but may promote inflammation [4]. Although Hiraki et al. reported that TGF-β1 neutralizing antibody improved survival rates of septic mice [5], modulation of the immune response can be difficult in sepsis especially since one cannot easily pinpoint the immune status at the bedside. Therefore, at the present time, the application of immune modulating therapy, including TGF-β1, is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Susantitaphong P, Cruz DN, Cerda J et al (2013) World incidence of AKI: A meta-analysis. Clin J Am Soc Nephrol 8:1482–1493

    Article  PubMed Central  PubMed  Google Scholar 

  2. Uchino S, Kellum JA, Bellomo R et al (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294:813–818

    Article  CAS  PubMed  Google Scholar 

  3. Barrera-Chimal J, Perez-Villalva R, Rodriguez-Romo R et al (2013) Spironolactone prevents chronic kidney disease caused by ischemic acute kidney injury. Kidney Int 83:93–103

    Article  CAS  PubMed  Google Scholar 

  4. Meng XM, Huang XR, Xiao J et al (2012) Diverse roles of TGF-beta receptor II in renal fibrosis and inflammation in vivo and in vitro. J Pathol 227:175–188

    Article  CAS  PubMed  Google Scholar 

  5. Hiraki S, Ono S, Tsujimoto H et al (2012) Neutralization of interleukin-10 or transforming growth factor-beta decreases the percentages of CD4+ CD25+ Foxp3+ regulatory T cells in septic mice, thereby leading to an improved survival. Surgery 151:313–322

    Article  PubMed  Google Scholar 

  6. Zeisberg M, Hanai J, Sugimoto H et al (2003) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9:964–968

    Article  CAS  PubMed  Google Scholar 

  7. Yanagita M (2007) Balance between bone morphogenetic proteins and their antagonists in kidney injury. Ther Apher Dial 11(Suppl 1):S38–S43

    Article  CAS  PubMed  Google Scholar 

  8. Correa-Costa M, Andrade-Oliveira V, Braga TT et al (2014) Activation of platelet-activating factor receptor exacerbates renal inflammation and promotes fibrosis. Lab Invest 94:455–466

    Article  CAS  PubMed  Google Scholar 

  9. Hruska KA, Guo G, Wozniak M et al (2000) Osteogenic protein-1 prevents renal fibrogenesis associated with ureteral obstruction. Am J Physiol Renal Physiol 279:F130–F143

    CAS  PubMed  Google Scholar 

  10. Zeisberg M, Bottiglio C, Kumar N et al (2003) Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am J Physiol Renal Physiol 285:F1060–F1067

    CAS  PubMed  Google Scholar 

  11. Ogutmen B, Tuglular S, Cakalagaoglu F, Ozener C, Akoglu E (2006) Transforming growth factor-beta1, vascular endothelial growth factor, and bone morphogenic protein-7 expression in tacrolimus-induced nephrotoxicity in rats. Transplant Proc 38:487–489

    Article  CAS  PubMed  Google Scholar 

  12. Meng XM, Chung AC, Lan HY (2013) Role of the TGF-beta/BMP-7/Smad pathways in renal diseases. Clin Sci (Lond) 124:243–254

    Article  CAS  Google Scholar 

  13. Di GV, Alday A, Chi L, Mishina Y, Rosenblum ND (2011) Alk3 controls nephron number and androgen production via lineage-specific effects in intermediate mesoderm. Development 138:2717–2727

    Article  Google Scholar 

  14. Sugimoto H, LeBleu VS, Bosukonda D et al (2012) Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat Med 18:396–404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Chung AC, Huang XR, Meng X, Lan HY (2010) miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. J Am Soc Nephrol 21:1317–1325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Xiao J, Meng XM, Huang XR et al (2012) miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol Ther 20:1251–1260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Zhong X, Chung AC, Chen HY et al (2013) miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56:663–674

    Article  CAS  PubMed  Google Scholar 

  18. Long J, Badal SS, Wang Y, Chang BH, Rodriguez A, Danesh FR (2013) MicroRNA-22 is a master regulator of bone morphogenetic protein-7/6 homeostasis in the kidney. J Biol Chem 288:36202–36214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Bosukonda D, Shih MS, Sampath KT, Vukicevic S (2000) Characterization of receptors for osteogenic protein-1/bone morphogenetic protein-7 (OP-1/BMP-7) in rat kidneys. Kidney Int 58:1902–1911

    CAS  PubMed  Google Scholar 

  20. Dudley AT, Lyons KM, Robertson EJ (1995) A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 9:2795–2807

    Article  CAS  PubMed  Google Scholar 

  21. Vukicevic S, Basic V, Rogic D et al (1998) Osteogenic protein-1 (bone morphogenetic protein-7) reduces severity of injury after ischemic acute renal failure in rat. J Clin Invest 102:202–214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Bellomo R, Kellum JA, Ronco C (2012) Acute kidney injury. Lancet 380:756–766

    Article  PubMed  Google Scholar 

  23. Zhang XL, Selbi W, de la Motte C, Hascall V, Phillips AO (2005) Bone morphogenic protein-7 inhibits monocyte-stimulated TGF-beta1 generation in renal proximal tubular epithelial cells. J Am Soc Nephrol 16:79–89

    Article  CAS  PubMed  Google Scholar 

  24. Lee MJ, Yang CW, Jin DC, Chang YS, Bang BK, Kim YS (2003) Bone morphogenetic protein-7 inhibits constitutive and interleukin-1 beta-induced monocyte chemoattractant protein-1 expression in human mesangial cells: role for JNK/AP-1 pathway. J Immunol 170:2557–2563

    Article  CAS  PubMed  Google Scholar 

  25. Gould SE, Day M, Jones SS, Dorai H (2002) BMP-7 regulates chemokine, cytokine, and hemodynamic gene expression in proximal tubule cells. Kidney Int 61:51–60

    Article  CAS  PubMed  Google Scholar 

  26. Wang S, de Caestecker M, Kopp J, Mitu G, Lapage J, Hirschberg R (2006) Renal bone morphogenetic protein-7 protects against diabetic nephropathy. J Am Soc Nephrol 17:2504–2512

    Article  CAS  PubMed  Google Scholar 

  27. Wang Z, Zhao J, Zhang J, Wei J, Zhang J, Huang Y (2010) Protective effect of BMP-7 against aristolochic acid-induced renal tubular epithelial cell injury. Toxicol Lett 198:348–357

    Article  CAS  PubMed  Google Scholar 

  28. Kamiura N, Hirahashi J, Matsuzaki Y et al (2013) Basic helix-loop-helix transcriptional factor MyoR regulates BMP-7 in acute kidney injury. Am J Physiol Renal Physiol 304:F1159–F1166

    Article  CAS  PubMed  Google Scholar 

  29. De Petris L, Hruska KA, Chiechio S, Liapis H (2007) Bone morphogenetic protein-7 delays podocyte injury due to high glucose. Nephrol Dial Transplant 22:3442–3450

    Article  PubMed  Google Scholar 

  30. Tyler JR, Robertson H, Booth TA, Burt AD, Kirby JA (2006) Chronic allograft nephropathy: intraepithelial signals generated by transforming growth factor-beta and bone morphogenetic protein-7. Am J Transplant 6:1367–1376

    Article  CAS  PubMed  Google Scholar 

  31. Xu Y, Wan J, Jiang D, Wu X (2010) BMP-7 blocks the cyclosporine-A-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells. Nephron Exp Nephrol 114:e23–e31

    Article  PubMed  Google Scholar 

  32. Xu Y, Wan J, Jiang D, Wu X (2009) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition in human renal proximal tubular epithelial cells. J Nephrol 22:403–410

    CAS  PubMed  Google Scholar 

  33. Rudnicki M, Eder S, Perco P et al (2007) Gene expression profiles of human proximal tubular epithelial cells in proteinuric nephropathies. Kidney Int 71:325–335

    Article  CAS  PubMed  Google Scholar 

  34. Dudas PL, Argentieri RL, Farrell FX (2009) BMP-7 fails to attenuate TGF-beta1-induced epithelial-to-mesenchymal transition in human proximal tubule epithelial cells. Nephrol Dial Transplant 24:1406–1416

    Article  CAS  PubMed  Google Scholar 

  35. Yamada S, Nakamura J, Asada M et al (2014) Twisted gastrulation, a BMP antagonist, exacerbates podocyte injury. PLoS One 9:e89135

    Article  PubMed Central  PubMed  Google Scholar 

  36. Nakazawa J, Isshiki K, Sugimoto T et al (2010) Renoprotective effects of asialoerythropoietin in diabetic mice against ischaemia-reperfusion-induced acute kidney injury. Nephrology (Carlton) 15:93–101

    Article  CAS  Google Scholar 

  37. Piscione TD, Phan T, Rosenblum ND (2001) BMP7 controls collecting tubule cell proliferation and apoptosis via Smad1-dependent and -independent pathways. Am J Physiol Renal Physiol 280:F19–F33

    CAS  PubMed  Google Scholar 

  38. Yang QH, Liu DW, Long Y, Liu HZ, Chai WZ, Wang XT (2009) Acute renal failure during sepsis: potential role of cell cycle regulation. J Infect 58:459–464

    Article  PubMed  Google Scholar 

  39. Kashani K, Al-Khafaji A, Ardiles T et al (2013) Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care 17:R25

    Article  PubMed Central  PubMed  Google Scholar 

  40. Bihorac A, Chawla LS, Shaw AD et al (2014) Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. Am J Respir Crit Care Med 189:932–939

    Article  CAS  PubMed  Google Scholar 

  41. Sakamoto N, Yoshimura M, Kimura T et al (2007) Bone morphogenetic protein-7 and interferon-alpha synergistically suppress hepatitis C virus replicon. Biochem Biophys Res Commun 357:467–473

    Article  CAS  PubMed  Google Scholar 

  42. Klose A, Waerzeggers Y, Monfared P et al (2011) Imaging bone morphogenetic protein 7 induced cell cycle arrest in experimental gliomas. Neoplasia 13:276–285

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Wang SN, Lapage J, Hirschberg R (2001) Loss of tubular bone morphogenetic protein-7 in diabetic nephropathy. J Am Soc Nephrol 12:2392–2399

    CAS  PubMed  Google Scholar 

  44. Wang S, Hirschberg R (2004) Bone morphogenetic protein-7 signals opposing transforming growth factor beta in mesangial cells. J Biol Chem 279:23200–23206

    Article  CAS  PubMed  Google Scholar 

  45. Luo DD, Phillips A, Fraser D (2010) Bone morphogenetic protein-7 inhibits proximal tubular epithelial cell Smad3 signaling via increased SnoN expression. Am J Pathol 176:1139–1147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Wang S, Hirschberg R (2003) BMP7 antagonizes TGF-beta -dependent fibrogenesis in mesangial cells. Am J Physiol Renal Physiol 284:F1006–F1013

    Google Scholar 

  47. Yanagita M (2010) Antagonists of bone morphogenetic proteins in kidney disease. Curr Opin Investig Drugs 11:315–322

    CAS  PubMed  Google Scholar 

  48. Yanagita M, Okuda T, Endo S et al (2006) Uterine sensitization-associated gene-1 (USAG-1), a novel BMP antagonist expressed in the kidney, accelerates tubular injury. J Clin Invest 116:70–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Chung AC, Yu X, Lan HY (2013) MicroRNA and nephropathy: emerging concepts. Int J Nephrol Renovasc Dis 6:169–179

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Kellum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, X., Wen, X., Kellum, J.A. (2015). Bone Morphogenetic Protein 7: An Emerging Therapeutic Target for Sepsis-associated Acute Kidney Injury. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2015. Annual Update in Intensive Care and Emergency Medicine 2015, vol 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-13761-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13761-2_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13760-5

  • Online ISBN: 978-3-319-13761-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics