Skip to main content

New Fully Non-invasive Hemodynamic Monitoring Technologies: Groovy or Paltry Tools

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2015

Part of the book series: Annual Update in Intensive Care and Emergency Medicine 2015 ((AUICEM,volume 2015))

Abstract

It is always alluring to dream about the future of medical diagnostics and treatment possibilities to meliorate patient care. Decreasing the distress from invasive procedures, either diagnostic or therapeutic, seems to be one of the possible ways to do so. Decreasing the number of injections, catheters, tubing and large wounds is beginning to be an important part of contemporary medicine. On the other hand, invasive monitoring tools sometimes provide us with very important information hardly obtainable by other means in the critical care environment. Even in this milieu, significant effort has been made to replace highly invasive tools with less-invasive equipment; hemodynamic monitoring being an extraordinary example of this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marik PE (2013) Noninvasive cardiac output monitors: a state-of the-art review. J Cardiothorac Vasc Anesth 27:121–134

    Article  PubMed  Google Scholar 

  2. Critchley LAH, Huang L (2014) USCOM-window to the circulation: utility of supra-sternal Doppler in an elderly anaesthetized patient for a robotic cystectomy. J Clin Monit Comput 28:83–93

    Article  PubMed  Google Scholar 

  3. Truijen J, van Lieshout JJ, Wesselink WA, Westerhof BE (2012) Noninvasive continuous hemodynamic monitoring. J Clin Monit Comput 26:267–278

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kim SH, Lilot M, Sidhu KS et al (2014) Accuracy and precision of continuous noninvasive arterial pressure monitoring compared with invasive arterial pressure: A systematic review and meta-analysis. Anesthesiology 120:1080–1097

    Article  PubMed  Google Scholar 

  5. Janelle GM, Gravenstein N (2006) An accuracy evaluation of the T-Line Tensymeter (continuous noninvasive blood pressure management device) versus conventional invasive radial artery monitoring in surgical patients. Anesth Analg 102:484–490

    Article  PubMed  Google Scholar 

  6. Keren H, Burkhoff D, Squara P (2007) Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am J Physiol Heart Circ Physiol 293:H583–H589

    Article  CAS  PubMed  Google Scholar 

  7. Maisch S, Bohm SH, Solà J et al (2011) Heart-lung interactions measured by electrical impedance tomography. Crit Care Med 39:2173–2176

    Article  PubMed  Google Scholar 

  8. Chen W, Kobayashi T, Ichikawa S, Takeuchi Y, Togawa T (2000) Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration. Med Biol Eng Comput 38:569–574

    Article  CAS  PubMed  Google Scholar 

  9. Lamhaut L, Apriotesei R, Combes X, Lejay M, Carli P, Vivien B (2011) Comparison of the accuracy of noninvasive hemoglobin monitoring by spectrophotometry (SpHb) and HemoCue® with automated laboratory hemoglobin measurement. Anesthesiology 115:548–554

    Article  CAS  PubMed  Google Scholar 

  10. Sandroni C, Cavallaro F, Marano C, Falcone C, Santis P, Antonelli M (2012) Accuracy of plethysmographic indices as predictors of fluid responsiveness in mechanically ventilated adults: a systematic review and meta-analysis. Intensive Care Med 38:1429–1437

    Article  PubMed  Google Scholar 

  11. Mayer J, Boldt J, Poland R, Peterson A, Manecke GR (2009) Continuous arterial pressure waveform-based cardiac output using the FloTrac/Vigileo: a review and meta-analysis. J Cardiothorac Vasc Anesth 23:401–406

    Article  PubMed  Google Scholar 

  12. Biais M, Nouette-Gaulain K, Cottenceau V et al (2008) Cardiac output measurement in patients undergoing liver transplantation: pulmonary artery catheter versus uncalibrated arterial pressure waveform analysis. Anesth Analg 106:1480–1486

    Article  PubMed  Google Scholar 

  13. Biancofiore G, Critchley LAH, Lee A et al (2009) Evaluation of an uncalibrated arterial pulse contour cardiac output monitoring system in cirrhotic patients undergoing liver surgery. Br J Anaesth 102:47–54

    Article  CAS  PubMed  Google Scholar 

  14. Slagt C, Malagon I, Groeneveld ABJ (2014) Systematic review of uncalibrated arterial pressure waveform analysis to determine cardiac output and stroke volume variation. Br J Anaesth 112:626–637

    Article  CAS  PubMed  Google Scholar 

  15. De Backer D, Marx G, Tan A et al (2011) Arterial pressure-based cardiac output monitoring: a multicenter validation of the third-generation software in septic patients. Intensive Care Med 37:233–240

    Article  PubMed Central  PubMed  Google Scholar 

  16. Critchley LA, Critchley JA (1999) A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput 15:85–91

    Article  CAS  PubMed  Google Scholar 

  17. Critchley LA, Yang XX, Lee A (2011) Assessment of trending ability of cardiac output monitors by polar plot methodology. J Cardiothorac Vasc Anesth 25:536–546

    Article  PubMed  Google Scholar 

  18. American Society of Anesthesiologists Task Force on Pulmonary Artery Catheterization (2003) Practice guidelines for pulmonary artery catheterization: an updated report by the American Society of Anesthesiologists Task Force on Pulmonary Artery Catheterization. Anesthesiology 99:988–1014

    Article  Google Scholar 

  19. Scheer B, Perel A, Pfeiffer UJ (2002) Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care 6:199–204

    Article  PubMed Central  PubMed  Google Scholar 

  20. Gayat E, Mongardon N, Tuil O et al (2013) CNAP(®) does not reliably detect minimal or maximal arterial blood pressures during induction of anaesthesia and tracheal intubation. Acta Anaesthesiol Scand 57:468–473

    Article  CAS  PubMed  Google Scholar 

  21. Horster S, Stemmler HJ, Strecker N et al (2012) Cardiac output measurements in septic patients: Comparing the accuracy of USCOM to PiCCO. Crit Care Res Pract 2012:270631

    PubMed Central  PubMed  Google Scholar 

  22. Hamilton MA, Cecconi M, Rhodes A (2011) A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg 112:1392–1402

    Article  PubMed  Google Scholar 

  23. Forget P, Lois F, de Kock M (2010) Goal-directed fluid management based on the pulse oximeter-derived pleth variability index reduces lactate levels and improves fluid management. Anesth Analg 111:910–914

    PubMed  Google Scholar 

  24. Yu Y, Dong J, Xu Z, Shen H, Zheng J (2014) Pleth variability index-directed fluid management in abdominal surgery under combined general and epidural anesthesia. J Clin Monit Comput (in press)

    Google Scholar 

  25. Pestaña D, Espinosa E, Eden A et al (2014) Perioperative goal-directed hemodynamic optimization using noninvasive cardiac output monitoring in major abdominal surgery: A prospective, randomized, multicenter, pragmatic trial: POEMAS Study (PeriOperative goal-directed thErapy in Major Abdominal Surgery). Anesth Analg 119:579–587

    Article  PubMed  Google Scholar 

  26. Pearse RM, Moreno RP, Bauer P et al (2012) Mortality after surgery in Europe: a 7 day cohort study. Lancet 380:1059–1065

    Article  PubMed Central  PubMed  Google Scholar 

  27. Walsh M, Devereaux PJ, Garg AX et al (2013) Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology 119:507–515

    Article  PubMed  Google Scholar 

  28. Ilies C, Kiskalt H, Siedenhans D et al (2012) Detection of hypotension during Caesarean section with continuous non-invasive arterial pressure device or intermittent oscillometric arterial pressure measurement. Br J Anaesth 109:413–419

    Article  CAS  PubMed  Google Scholar 

  29. Benes J, Simanova A, Tovarnicka T et al (2014) Continuous non-invasive monitoring improves blood pressure stability in upright position: randomized controlled trial. J Clin Monit Comput (in press)

    Google Scholar 

  30. Challand C, Struthers R, Sneyd JR et al (2012) Randomized controlled trial of intraoperative goal-directed fluid therapy in aerobically fit and unfit patients having major colorectal surgery. Br J Anaesth 108:53–62

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Benes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Benes, J., Kasal, E. (2015). New Fully Non-invasive Hemodynamic Monitoring Technologies: Groovy or Paltry Tools. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2015. Annual Update in Intensive Care and Emergency Medicine 2015, vol 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-13761-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13761-2_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13760-5

  • Online ISBN: 978-3-319-13761-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics