Skip to main content

Hyperoxia in Intensive Care and Emergency Medicine: Dr. Jekyll or Mr. Hyde? An Update

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2015

Part of the book series: Annual Update in Intensive Care and Emergency Medicine 2015 ((AUICEM,volume 2015))

  • 2568 Accesses

Abstract

Since the discovery of molecular oxygen (O2) at the end of the 18th century, its ‘friend and foe’ character has been recognized. On the one hand, O2 is vital for survival of mammalian cells since it allows for a sustained, high synthesis rate of adenosine triphosphate (ATP) in the respiratory chain because of its unique properties as a final electron acceptor [1]. On the other hand, this chemical property also renders it one of the strongest oxidizing agents that can damage any biological molecule [1], a phenomenon which led to the paradigm of ‘oxygen toxicity’. Oxygen toxicity is the result of enhanced formation of reactive oxygen species (ROS), the rate of formation being directly related to the O2 partial pressure [2]. The ambiguous role of O2 as a crucial molecule for ATP synthesis in the respiratory chain is also valid in the context of ROS formation. Approximately 1–3% of mitochondrial O2 consumption leads to ROS production; in other words, the more ATP is produced, the more ROS are released [2]! Moreover, ROS share the Janus-headed character of O2: While their toxic potential is well-established, they are also vital, both for host defense and as signaling molecules [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leverve XM (2008) To cope with oxygen: a long and still tumultuous story for life. Crit Care Med 36:637–638

    Article  PubMed  Google Scholar 

  2. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Magder S (2006) Reactive oxygen species: toxic molecules or spark of life? Crit Care 10:208

    Article  PubMed Central  PubMed  Google Scholar 

  4. Vincent JL, De Backer D (2013) Circulatory shock. N Engl J Med 369:1726–1734

    Article  CAS  PubMed  Google Scholar 

  5. Weil MH, Shubin H (1969) The “VIP” approach to the bedside management of shock. JAMA 207:337–340

    Article  CAS  PubMed  Google Scholar 

  6. The ProCESS Investigators (2014) A randomized trial of protocol-based care for early septic shock. N Engl J Med 370:1683–1693

    Article  PubMed Central  Google Scholar 

  7. Bitterman H (2009) Bench-to-bedside review: Oxygen as a drug. Crit Care 13:205

    Article  PubMed Central  PubMed  Google Scholar 

  8. Cornet AD, Kooter AJ, Peters MJL, Smulders YM (2013) The potential harm of oxygen therapy in medical emergencies. Crit Care 17:313

    Article  PubMed Central  PubMed  Google Scholar 

  9. Edmark L, Kostova-Aherdan K, Enlund M, Hedenstierna G (2003) Optimal oxygen concentration during induction of general anesthesia. Anesthesiology 98:28–33

    Article  CAS  PubMed  Google Scholar 

  10. Calzia E, Asfar P, Hauser B et al (2010) Hyperoxia may be beneficial. Crit Care Med 38 (suppl):S559–S568

    Article  CAS  PubMed  Google Scholar 

  11. Boerema I, Meyne NG, Brummelkamp WK et al (1960) [Life without blood]. Ned Tijdschr Geneeskd 104:949–954

    CAS  PubMed  Google Scholar 

  12. Blasiole B, Bayir H, Vagni VA et al (2013) Effect of hyperoxia on resuscitation of experimental combined traumatic brain injury and hemorrhagic shock in mice. Anesthesiology 118:649–663

    Article  CAS  PubMed  Google Scholar 

  13. Kapanci Y, Tosco R, Eggermann J, Gould VE (1972) Oxygen pneumonitis in man. Chest 62:162–169

    Article  CAS  PubMed  Google Scholar 

  14. Aboab J, Jonson B, Kouatchet A, Taille S, Niklason L, Brochard L (2006) Effect of inspired oxygen fraction on alveolar derecruitment in acute respiratory distress syndrome. Intensive Care Med 32:1979–1986

    Article  PubMed  Google Scholar 

  15. Mak S, Azevedo ER, Liu PP, Newton GE (2001) Effect of hyperoxia on left ventricular function and filling pressures in patients with and without congestive heart failure. Chest 120:467–473

    Article  CAS  PubMed  Google Scholar 

  16. Stamler JS, Jia L, Eu JP et al (1997) Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 276:2034–2037

    Article  CAS  PubMed  Google Scholar 

  17. Rossi P, Tauzin L, Weiss M, Rostain JC, Sainty JM, Bousuges A (2007) Could hyperoxic ventilation impair oxygen delivery in septic patients? Clin Physiol Funct Imaging 27:180–184

    Article  PubMed  Google Scholar 

  18. Reinhart K, Bloos F, König F, Bredle D, Hannemann L (1991) Reversible decrease of oxygen consumption by hyperoxia. Chest 99:690–694

    Article  CAS  PubMed  Google Scholar 

  19. Ganz W, Donoso R, Marcus H, Swan HJC (1972) Coronary hemodynamics and myocardial oxygen metabolism during oxygen breathing in patients with and without coronary artery disease. Circulation 45:763–768

    Article  CAS  PubMed  Google Scholar 

  20. Leverve XM (2007) Mitochondrial function and substrate availability. Crit Care Med 35 (Suppl):S454–S460

    Article  CAS  PubMed  Google Scholar 

  21. Shuvy M, Atar D, Steg PG et al (2013) Oxygen therapy in acute coronary syndrome: are the benefits worth the risk? Eur Heart J 34:1630–1635

    Article  CAS  PubMed  Google Scholar 

  22. Arntz HR, Bossaert LL, Danchin N, Nikolaou NI (2010) European Resuscitation Council Guidelines for Resuscitation 2010 Section 5. Initial management of acute coronary syndromes. Resuscitation 81:1353–1363

    Article  PubMed  Google Scholar 

  23. Rawles JM, Kenmure ACF (1976) Controlled trial of oxygen in uncomplicated myocardial infarction. BMJ 1:1121–1123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ranchord AM, Argyle R, Beynoon R et al (2012) High-concentration versus titrated oxygen therapy in ST-elevation myocardial infarction: A pilot randomized controlled trial. Am Heart J 163:168–175

    Article  CAS  PubMed  Google Scholar 

  25. Madias JE, Madias NE, Hood WB (1976) Precordial ST-segment mapping. 2. Effects of oxygen inhalation in patients with acute myocardial infarction. Circulation 53:411–417

    Article  CAS  PubMed  Google Scholar 

  26. Ukholkina GB, Kostyanov IY, Kuchkina NV, Gofman YB (2005) Oxygen therapy in combination with endovascular reperfusion during the first hours of acute myocardial infarction: clinical and laboratory findings. Int J Intervent Cardioangiol 9:45–51

    Google Scholar 

  27. Horvat M, Yoshida S, Prakash R, Marcus HS, Swan HJC, Ganz W (1972) Effect of oxygen breathing on pacing-induced angina pectoris and other manifestations of coronary insufficiency. Circulation 45:837–844

    Article  CAS  PubMed  Google Scholar 

  28. Ranchord AM, Perrin K, Weatherall M, Beasley R, Simmonds M (2012) A randomised controlled trial of the effect of high concentration oxygen on myocardial ischemia during exercise. Int J Cardiol 160:201–205

    Article  PubMed  Google Scholar 

  29. Rockswold SB, Rockswold GL, Zaun DA et al (2010) A prospective, randomized clinical trial to compare the effect of hyperbaric to normobaric hyperoxia on cerebral metabolism, intracranial pressure, and oxygen toxicity in severe traumatic brain injury. J Neurosurg 112:1080–1094

    Article  CAS  PubMed  Google Scholar 

  30. Rockswold SB, Rockswold GL, Zaun DA, Liu J (2013) A prospective, randomized Phase II clinical trial to evaluate the effect of combined hyperbaric and normobaric hyperoxia on cerebral metabolism, intracranial pressure, oxygen toxicity, and clinical outcome in severe traumatic brain injury. J Neurosurg 118:1317–1328

    Article  CAS  PubMed  Google Scholar 

  31. Hlatky R, Valadka AB, Gopinath SP, Robertson CS (2007) Brain tissue oxygen tension response to induced hyperoxia in hypoperfused brain. J Neurosurg 108:53–58

    Article  Google Scholar 

  32. Veenith TV, Carter EL, Grossac J et al (2014) Use of diffusion tensor imaging to assess the impact of normobaric hyperoxia within at-risk pericontusional tissue after traumatic brain injury. J Cereb Blood Flow Metab 34:1622–1627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Narotam P (2013) Eubaric hpyeroxia. Controversies in the management of acute traumatic brain injury. Crit Care 17:197

    Article  PubMed Central  PubMed  Google Scholar 

  34. Raj R, Bendel S, Reinikainen M et al (2013) Hyperoxia and long-term outcome after traumatic brain injury. Crit Care 17:R177

    Article  PubMed Central  PubMed  Google Scholar 

  35. Brenner M, Stein D, Hu P, Kufera J, Wooford M, Scalea T (2012) Association between early hyperoxia and worse outcomes after traumatic brain injury. Arch Surg 147:1042–1046

    Article  PubMed  Google Scholar 

  36. Rincon F, Kang J, Vibbert M, Urtecho J, Athar MK, Jallo J (2014) Significance of arterial hyperoxia and relationship with case fatality in traumatic brain injury; a multicentre cohort study. J Neurol Neurosurg Psychiatry 85:799–805

    Article  PubMed  Google Scholar 

  37. Jeon SB, Choi HA, Badjata N et al (2014) Hyperoxia may be related to delayed cerebral ischemia and poor outcome after subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 85:1301–1307

    Article  PubMed  Google Scholar 

  38. Rincon F, Kang J, Maltenfort M et al (2014) Association between hyperoxia and mortality after stroke: a multicenter cohort study. Crit Care Med 42:387–396

    Article  PubMed  Google Scholar 

  39. Roffe C1, Ali K, Warusevitane A et al (2011) The SOS pilot study: a RCT of routine oxygen supplementation early after acute stroke – effect on recovery of neurological function at one week. PloS One 6:e19113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Ali K, Warusevitane A, Lally F et al (2013) The stroke oxygen pilot study: a randomized controlled trial of the effects of routine oxygen supplementation early after acute stroke – effect on key outcomes at six months. PloS One 8:e59274

    Google Scholar 

  41. Kilgannon JH, Jones AE, Shapiro NI et al (2010) Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA 303:2165–2171

    Article  CAS  PubMed  Google Scholar 

  42. Kilgannon JH, Jones AE, Parrillo JE et al (2011) Relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation 123:2717–2722

    Article  CAS  PubMed  Google Scholar 

  43. Bellomo R, Bailey M, Eastwood GM et al (2011) Arterial hyperoxia and in-hospital mortality after resuscitation from cardiac arrest. Crit Care 15:R90

    Article  PubMed Central  PubMed  Google Scholar 

  44. Vaahersalo J, Bendel S, Reinikainen M et al (2014) Arterial blood gas tensions after resuscitation from out-of-hospital cardiac arrest: associations with long-term neurologic outcome. Crit Care Med 42:1463–1470

    Article  PubMed  Google Scholar 

  45. Janz DR, Hollenbeck RD, Pollock JS, McPherson JA, Rice TW (2012) Hyperoxia is associated with increased mortality in patients treated with mild therapeutic hypothermia after sudden cardiac arrest. Crit Care Med 40:3135–3139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Wang CH, Chang WT, Huang CH et al (2014) The effect of hyperoxia on survival following adult cardiac arrest: A systematic review and meta-analysis of observational studies. Resuscitation 85:1142–1148

    Article  PubMed  Google Scholar 

  47. Knighton DR, Halliday B, Hunt TK (1984) Oxygen as an antibiotic. The effect of inspired oxygen on infection. Arch Surg 119:199–204

    Article  CAS  PubMed  Google Scholar 

  48. Hovaguimian F, Lysakowski C, Elia N, Tramèr MR (2013) Effect of intraoperative high inspired oxygen fraction on surgical site infection, postoperative nausea and vomiting, and pulmonary function: systematic review and meta-analysis of randomized controlled trials. Anesthesiology 119:303–316

    Article  CAS  PubMed  Google Scholar 

  49. Schietroma M, Cecilia EM, Sista F, Carlei F, Pessia B, Amicucci G (2014) High-concentration supplemental perioperative oxygen and surgical site infection following elective colorectal surgery for rectal cancer: a prospective, randomized, double-blind, controlled, single-site trial. Am J Surg 208:719–726

    Article  PubMed  Google Scholar 

  50. Meyhoff CS, Jorgensen LN, Wetterslev J, Christensen KB, Rasmussen LS, PROXI Trial group (2012) Increased long-term mortality after high perioperative inspiratory oxygen fraction during abdominal surgery: Follo-up of a randomized clinical trial. Anesth Analg 115:849–854

    Article  PubMed  Google Scholar 

  51. Meyhoff CS, Jorgensen LN, Wetterslev J, Siersma VD, Rasmussen LS, PROXI Trial group (2014) Risk of new or recurrent cancer after a high perioperative inspiratory oxygen fraction during abdominal surgery. Brit J Anaesth 113 (Suppl 1):i74–i81

    Article  CAS  PubMed  Google Scholar 

  52. de Jonge E, Peelen L, Keijzers PJ et al (2008) Association between administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intenisve care unit patients. Crit Care 12:R156

    Article  PubMed Central  PubMed  Google Scholar 

  53. Eastwood G, Bellomo R, Bailey M et al (2012) Arterial oxygen tension and mortality in mechanically ventilated patients. Intensive Care Med 38:91–98

    Article  CAS  PubMed  Google Scholar 

  54. Suzuki S, Eastwood GM, Glassford NJ et al (2014) Conservative oxygen therapy in mechanically ventilated patients: a pilot before-and-after trial. Crit Care Med 42:1414–1422

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Radermacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hafner, S., Radermacher, P., Asfar, P. (2015). Hyperoxia in Intensive Care and Emergency Medicine: Dr. Jekyll or Mr. Hyde? An Update. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2015. Annual Update in Intensive Care and Emergency Medicine 2015, vol 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-13761-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13761-2_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13760-5

  • Online ISBN: 978-3-319-13761-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics