Extrapolated States, Void States, and a Huge Novel Class of Distillable Entangled States

  • Michel Boyer
  • Tal Mor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8890)


A nice and interesting property of any pure tensor-product state is that each such state has distillable entangled states at an arbitrarily small distance ε in its neighbourhood. We say that such nearby states are ε-entangled, and we call the tensor product state in that case, a “boundary separable state”, as there is entanglement at any distance from this “boundary”. Here we find a huge class of separable states that also share that property mentioned above – they all have ε-entangled states at any small distance in their neighbourhood. Furthermore, the entanglement they have is proven to be distillable.


quantum computing and quantum information entanglement distillability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible Product Bases and Bound Entanglement. Phys. Rev. Lett. 82, 5385–5388 (1999), CrossRefMathSciNetGoogle Scholar
  2. 2.
    Dur, W., Vidal, G., Cirac, J.I.: Three Qubits Can Be Entangled in Two Inequivalent Ways. Phys. Rev. A 62, 062314 (2000),
  3. 3.
    Horodecki, M., Horodecki, P., Horodecki, R.: Separability of Mixed States: Necessary and Sucient Conditions. Physics Letters A 223(12), 1–8 (1996), CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Horodecki, M., Horodecki, P., Horodecki, R.: Inseparable Two Spin- 1 2 Density Matrices Can Be Distilled to a Singlet Form. Phys. Rev. Lett. 78, 574–577 (1997), CrossRefGoogle Scholar
  5. 5.
    Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-State Entanglement and Distillation: Is There a Entanglement in Nature? Phys. Rev. Lett. 80, 5239–5242 (1998), CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Horodecki, P.: Separability Criterion and Inseparable Mixed States with Positive Partial Transposition. Physics Letters A 232(5), 333–339 (1997), CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Peres, A.: Separability Criterion for Density Matrices. Phys. Rev. Lett. 77(8), 1413–1415 (1996), CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Werner, R.F.: Quantum States with Einstein-Podolsky-Rosen Correlations Admitting a Hidden-Variable Model. Phys. Rev. A 40, 4277–4281 (1989), CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michel Boyer
    • 1
  • Tal Mor
    • 2
  1. 1.DIROUniversité de MontréalCanada
  2. 2.TechnionIsrael

Personalised recommendations