Skip to main content

Practical Superconductors

  • Chapter
  • First Online:
Superconductivity

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 214))

Abstract

All superconductors exhibit thermal and EM instabilities because of their poor thermal conductivity and worst electrical conductivity in their normal state. These instabilities lead to premature quench in superconducting magnets. To circumvent the problem, practical superconductors are produced in the form of fine filaments in high conductivity copper matrix. Most popular superconductor Nb–Ti had been produced this way by co-processing it with Cu and used universally up to a field of 9 T. To meet the stringent requirement of high J c and low ac losses for accelerator and fusion reactor magnets, impressive improvements have been made in the production techniques. Conductors with fine filaments smaller than 1 µm cladded with diffusion barriers, with low filament spacing to dia. ratio (~0.15), resistive matrix to reduce filament coupling and low fraction of Cu have been produced. Conductors carrying large J c of the order of 50 kA in Rutherford and CICC (cable-in-conduit conductor) configuration have been produced. For future accelerators and fusion reactors high field A-15 Nb3Sn superconductor cables have been produced by bronze technique, internal tin (IT) method, improved distributed tin (DT) method and the jelly roll (JR) methods. The DT technique has yielded Nb3Sn wire with 2–3 µm filament dia. with J c = 105 A/cm2 (12 T, 4.2 K) and ac loss = 300 kJ/m3 (±3 T, 4.2 K) suitable for ITER application. JAERI has produced CICC Nb3Al cable by JR technique which produces a field of 13 T at a current of 46 kA. NRIM, KEK and FNAL are jointly developing Nb3Al Rutherford cable (14 × 1.84 mm) using 27 strands prepared by the so called JR-RHQT (rapid heating quench technique) for the luminosity upgradation of the LHC. V3Ga conductors too are being developed by PIT technique for the future Demo fusion power reactor to take care of the induced radioactivity by the 14 MeV neutrons released by the D + T reaction. HTS like REBCO are being developed to generate ultra high field. A record field of 35.4 T has been reported by NHMFL recently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.N. Wilson, Superconducting Magnets (Clarendon Press, Oxford, 1983)

    Google Scholar 

  2. M.N. Wilson, Cryogenics 48, 381 (2008)

    Article  ADS  Google Scholar 

  3. P.F. Smith, M.N. Wilson, C.R. Walter, J.D. Lewin, Proceedings of the Summer Study on Superconducting Devices (Brookhaven National Laboratory, Upton, 1968), p. 967

    Google Scholar 

  4. P.R. Critchlow, E. Gregory, B. Zeitlin, Cryogenics 11, 3 (1971)

    Google Scholar 

  5. P.R. Critchlow, Zeitlin, J. App. Phys. 41, 4860 (1970)

    Google Scholar 

  6. J.K. Hulm, R.D. Blaugher, Phys. Rev. 123, 1569 (1961)

    Article  ADS  Google Scholar 

  7. B.T. Matthias, Superconducting device consisting of a niobium and titanium composition. US Patent No. 3 167 692, filed, 24 April, granted 26 Jan 1965

    Google Scholar 

  8. T.G. Berlincourt, R.R. Hake, Bull. Am. Phys. Soc. 7, 408 (1962)

    Google Scholar 

  9. T.G. Berlincourt, R.R. Hake, Superconductivity at high magnetic fields and current densities in Ti-Nb alloy. Post deadline paper at the Washington Meeting, Am. Phys. Soc. (23–26 April 1962)

    Google Scholar 

  10. H.T. Coffey, J.K. Hulm, W.T. Reynolds et al., J. App. Phys. 36, 128 (1965)

    Article  ADS  Google Scholar 

  11. J.E. Kunzler, B.T. Matthias, Superconducting magnet consisting of a niobium-zirconium composition. US Patent No. 3 281 736, filed 24 April 1961, granted 25 Oct 1966

    Google Scholar 

  12. T.G. Berlincourt, R.R. Hake, D.H. Leslie, Phys. Rev. Lett. 6, 671 (1961)

    Article  ADS  Google Scholar 

  13. T.G. Berlincourt, Cryogenics 27, 283 (1987)

    Article  ADS  Google Scholar 

  14. http://boulder.research.yale.edu/Boulder-2000/lectures/larbalestier/larbalestier3.pdf. PPT

  15. A.V. Narlikar, D. Dew-Hughes, J. Mat. Sci. Eng. 1, 317 (1966)

    ADS  Google Scholar 

  16. H. Krauth, Fabrication and Applications of NbTi and Nb 3 Sn Superconductors. Vacuumschmelze GmbH & Co. KG “Niobium, Science & Technology”: Proc. Int. Symp. Nb 2001, Orlando, Florida, USA, 2–5 Dec 2001. http://cbmm.com.br/portug/sources/techlib/science_techno/table_content/sub_3/images/pdfs/014.pdf

  17. E. Gregory, Cryogenics 27, 290 (1987)

    Article  ADS  Google Scholar 

  18. G. Hardy, J.K. Hulm, Phys. Rev. 89, 884 (1953)

    Article  ADS  Google Scholar 

  19. B.T. Matthias, T.H. Geballe, S. Geller, E. Corenzwit, Phys. Rev. 95, 1435 (1954)

    Article  ADS  Google Scholar 

  20. J. Charlesworth, I. MacPhail, P. Madsen, J. Mater. Sci. 5, 580 (1970)

    Article  ADS  Google Scholar 

  21. J.E. Kunzler, E. Buehler, F.S.L. Hsu, J.H. Wernick, Phys. Rev. 6, 89 (1961)

    ADS  Google Scholar 

  22. R.G. Sharma, J. Sci. Ind. Res. 42, 64 (1983)

    Google Scholar 

  23. R.G. Sharma, Cryogenics 27, 361 (1987)

    Article  ADS  Google Scholar 

  24. K. Tachikawa, Cryogenics 48, 337 (2008)

    Article  ADS  Google Scholar 

  25. K. Tachikawa, European Superconductivity News Forum IESNF. 16 April 2011, pp. 1–30

    Google Scholar 

  26. A.R. Kaufman, J.J. Pickett, Bull. Am. Phys. Soc. 15, 883 (1970)

    Google Scholar 

  27. K. Tachikawa, Proc. Int. Cryog. Eng. Conf. (ICEC-3), (Lliffle Science and Technical Publications, Surrey, 1970), p. 339

    Google Scholar 

  28. E. Nembach, K. Tachikawa, J. Less Common Metals 19, 359 (1969)

    Article  Google Scholar 

  29. M. Hong, I.W. Wu, J.W. Morris Jr et al., Adv. Cryog. Eng. 28, 435 (1982)

    Google Scholar 

  30. T. Miyazaki, H. Kato, T. Hase et al., IEEE Trans. App. Supercond. 14, 975 (2004)

    Article  Google Scholar 

  31. H. Sakine, Y. Iijima, K. Tachikawa, J. App. Phys. 53, 5354 (1982)

    Article  ADS  Google Scholar 

  32. K. Kamata, H. Moriai, N. Tada et al., IEEE Trans. Magn. 21, 277 (1985)

    Article  ADS  Google Scholar 

  33. T. Kiyoshi, S. Matsumoto, A. Sato, IEEE Trans. App. Supercond. 15, 1330 (2005)

    Google Scholar 

  34. K. Okuno, H. Nakajima, N. Koizumi, IEEE Trans. App. Supercond. 16, 880 (2006)

    Article  Google Scholar 

  35. K. Tachikawa, K. Miyashita, K. Sugiyama et al., 2T-Class 50 Hz AC Magnet of 50 mm Bore Made by Bronze-Processed Submicronic Filament New Nb 3 Sn Cables, eds. by D. Dew-Hughes, R.G. Scurlock, J.H.P. Watson. Proc. ICEC 17 (IOP, Bristol, 1998), pp. 439–442

    Google Scholar 

  36. Y. Hashimoto, K. Yoshijaki, M. Tanetia, Proceedings of the Fifth International Cryogenic Engineering Conference (IPC Science and Technology Press, Guildford, 1974), p. 332

    Google Scholar 

  37. B.A. Zeitlin, G.M. Ozeryansky, K. Hemachalam, IEEE Trans. Magn. MAG-21, 293 (1985)

    Google Scholar 

  38. K. Egawa, Y. Kubo, T. Nagai, T. Sone et al., Adv. Cryog. Eng. (Mater) 50B, 403 (2004)

    Article  Google Scholar 

  39. Y. Kubo, K. Egawa, T. Nagai, T. Sone et al., IEEE Trans. App. Supercond. 16, 1232 (2006)

    Article  Google Scholar 

  40. W.K. McDonald, C.W. Curtis, R.M. Scalan et al., IEEE Trans. Magn. MAG-19, 1124 (1983)

    Google Scholar 

  41. K. Tachikawa, T. Ando, H. Sasaki et al., IEEE Trans. App. Supercond. 21, 2533 (2011)

    Article  ADS  Google Scholar 

  42. C.C. Tsuei, Science 180, 57 (1973). IEEE Trans. Magn. MAG-11, 272 (1975)

    Google Scholar 

  43. R.G. Sharma, N.E. Alekseevskii, J. Phys D8, 1783 (1975)

    ADS  Google Scholar 

  44. R.G. Sharma, Y.S. Reddy, M.M. Krishna, Indigenous development of A-15 superconductors through in situ technique. Workshop on Superconducting Magnets and Cryogenics, ICFA, Brookhaven National Laboratory, Upton, New York, USA (12–16 May 1986), pp. 127–131

    Google Scholar 

  45. Handbook of Superconducting Materials, eds. by A. D.A. Cardwell, D.S. Ginley, ISBN 07503 04324 (Vol. 1), 2003, Fig. 3.3.4.1(a), p. 674. Contribution B 3.3.4 Processing of Low Tc Conductors: The Composite Nb 3 Al, Author Takao Takeuchi

    Google Scholar 

  46. Y. Yamada, N. Ayai, A. Mikumo et al., Cryogenics 39, 115 (1999)

    Article  ADS  Google Scholar 

  47. N. Koizumi, Y. Takahashi, Y. Ninoya et al., Cryogenics 42, 675 (2002)

    Article  ADS  Google Scholar 

  48. T. Takeuchi, Topical review ‘Nb 3 Al conductors for high-field applications’. Supercond. Sci. Technol. 13, R101 (2000)

    Article  ADS  Google Scholar 

  49. T. Takeuchi, A. Kikuchi, N. Banno et al., Cryogenics 48, 371 (2008)

    Article  ADS  Google Scholar 

  50. K. Tsuchiya, A. Kikuchi, T. Takeuchi et al., IEEE Trans. App. Supercond. 21, 2521 (2011)

    Article  ADS  Google Scholar 

  51. B.T. Matthias, E.A. Wood, E. Cobbnzwit, J. Bala, J. Phys. Chem. Solids 1, 188 (1956)

    Article  ADS  Google Scholar 

  52. The Ga-V (Gallium-Vanadium) System, Bull. Alloy Phase Diagrams 2, 201 (1981)

    Google Scholar 

  53. K. Tachikawa, Y. Tanaka, Japan J. App. Phys. 5, 834 (1966)

    Article  ADS  Google Scholar 

  54. K. Tachikawa, Y. Tanaka, Y. Yoshida, et al., IEEE Trans. Magn. Mag-15, 391 (1979)

    Google Scholar 

  55. R.G. Sharma, Y. Tanaka, K. Tachikawa, Cryogenics 21, 165 (1981)

    Article  ADS  Google Scholar 

  56. R.G. Sharma, Y. Tanaka, K. Tachikawa, Cryogenics 25, 381 (1985)

    Article  ADS  Google Scholar 

  57. Y. Furuto, T. Suzuki, K. Tachikawa, Y. Iwasa, App. Phys. Lett. 24, 34 (1974)

    Article  ADS  Google Scholar 

  58. Y. Hishinuma, A. Kikuchi, Y. Iijima et al., Supercond. Sci. Technol. 20, 569 (2007)

    Article  ADS  Google Scholar 

  59. P. Chaudhuri, R.H. Koch, R.B. Laibowitz et al., Phys. Rev. Lett. 58, 2684 (1987)

    Article  ADS  Google Scholar 

  60. T.R. Dinger, T.K. Worthington, W.J. Gallagher, R.L. Sandstorm, Phys. Rev. Lett. 58, 2687 (1987)

    Article  ADS  Google Scholar 

  61. R.G. Sharma, Y.S. Reddy, S.R. Jha et al., Pramana J. Phys. 30, L75 (1988)

    Article  ADS  Google Scholar 

  62. R. Gupta, PPT Superconducting Magnets for Particle Accelerators (RISP, ISB, Korea, Aug 22 2012) (slide no. 9). http://www.bnl.gov/magnets/staff/gupta/Talks/RISP/HTS-MAG-RISP.pdf

  63. YBCO: Tape, ∥Tape-plane, SuperPower “Turbo” Double layer (tested NHMFL 2009). Source: Aixia Xu and Jan Jaroszynski, June 2009. 20 T depression due to He bubble, dashed line estimates true performance

    Google Scholar 

  64. YBCO: Tape, ⊥ Tape-plane, SuperPower “Turbo” Double layer (tested NHMFL 2009). Source: Aixia Xu and Jan Jaroszynski, June 2009

    Google Scholar 

  65. Bi-2223: B ⊥ Tape-plane “DI” BSCCO “Carrier Controlled” Sumitomo Electric Industries (MEM’13 presented by Kazuhiko Hayashi)

    Google Scholar 

  66. Bi-2223 (2012 production): B ⊥ Tape-plane “DI” BSCCO (measured at NHMFL by Jianyi Jiang and Dmytro Abraimov Oct. 2013)

    Google Scholar 

  67. D.C. Larbalestier, J. Jiang, U.P. Trociewitz, F. Kametani, C. Scheuerlein, M. Dalban-Canassy, M. Matras, P. Chen, N.C. Craig, P.J. Lee, E.E. Hellstrom, Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T. Nat. Mater. (2014) (Advance online publication). doi:10.1038/nmat3887 (Bi-2212: OST 2212 wire with 100 bar over-pressure HT at NHMFL. 25 % SC)

  68. T. Boutboul, S. Le Naour, D. Leroy, L. Oberli, V. Previtali, Critical current density in superconducting Nb-Ti strands in the 100 mT to 11 T applied field range. IEEE Trans. Appl. Supercond. 16(2), 1184–1187 (2006). doi:10.1109/TASC.2006.870777 (Nb-47Ti: 0-6 T—1.8 and 4.2 K)

  69. Nb-47Ti: 5-8 T 1.8 K Maximal: Nb-Ti: Max @4.2 K for whole LHC NbTi strand production (CERN-T. Boutboul ‘07)

    Google Scholar 

  70. H. Kanithi, D. Blasiak, J. Lajewski, C. Berriaud, P. Vedrine, G. Gilgrass, Production Results of 11.75 Tesla Iseult/INUMAC MRI Conductor at Luvata. IEEE Trans. Appl. Supercond. 24, 1–4 (2014). doi:10.1109/TASC.2013.2281417 (Nb-47Ti: 4.22 K for 11.75 T Iseult/INUMAC MRI)

  71. J.A. Parrell, Y. Zhang, M.B. Field, P. Cisek, S. Hong, High field Nb3Sn conductor development at Oxford Superconducting Technology. IEEE Trans. Appl. Supercond. 13(2), 3470–3473 (2003). doi:10.1109/TASC.2003.812360 (Nb 3 Sn (RRP®): Non-Cu Jc Internal Sn OI-ST RRP® 1.3 mm)

  72. J.A. Parrell, M.B. Field, Y. Zhang, S. Hong, Nb 3 Sn conductor development for fusion and particle accelerator applications. AIP Conf. Proc. 711, 369 (2004). doi:10.1063/1.1774590

  73. T. Miyazaki, H. Kato, T. Hase, M. Hamada, Y. Murakami, K. Itoh, T. Kiyoshi, H. Wada, Development of high Sn content bronze processed Nb3Sn superconducting wire for high field magnets. IEEE Trans. Appl. Supercond. 14(2), 975–978 (2004). doi:10.1109/TASC.2004.830344 (Nb3Sn (High Sn Bronze): T. Miyazaki et al. MT18—fig3)

  74. G.Z. Li, M.D. Sumption, J.B. Zwayer, M.A. Susner, M.A. Rindfleisch, C.J. Thong, M.J. Tomsic, E.W. Collings, Effects of carbon concentration and filament number on advanced internal Mg infiltration-processed MgB2 strands. Supercond. Sci. Technol. 26(9), 095007 (2013). doi:10.1088/0953-2048/26/9/095007 (MgB2: 18 Filament—The OSU/HTRI C 2 mol% AIMI (“Advanced Internal Mg Infiltration”) 33.8 % Filament to strand ratio, 39.1 % MgB2 in filament)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Sharma .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sharma, R.G. (2015). Practical Superconductors. In: Superconductivity. Springer Series in Materials Science, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-319-13713-1_6

Download citation

Publish with us

Policies and ethics