Skip to main content

Uncovering the Semantics of Wikipedia Pagelinks

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 8876)

Abstract

Wikipedia pagelinks, i.e. links between Wikipages, carry an intended semantics: they indicate the existence of a factual relation between the DBpedia entity referenced by the source Wikipage, and the DBpedia entity referenced by the target Wikipage of the link. These relations are represented in DBpedia as occurrences of the generic ”wikiPageWikilink” property. We designed and implemented a novel method to uncover the intended semantics of pagelinks, and to represent them as semantic relations. In this paper, we test our method on a subset of Wikipedia, showing its potential impact for DBpedia enrichment.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic Web Inf. Syst. 5(3), 1–22 (2009)

    Article  Google Scholar 

  2. Bos, J., Nissim, M.: Combining discourse representation theory with framenet. In: Frames, Corpora, and Knowledge Representation, pp. 169–183. R. Rossini Favretti and Bononia University Press (2008)

    Google Scholar 

  3. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr, E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: Proceedings of the Twenty-Fourth Conference on Artificial Intelligence, AAAI 2010 (2010)

    Google Scholar 

  4. d’Aquin, M., Motta, E., Sabou, M., Angeletou, S., Grindinoc, L., Lopez, V., Guidi, D.: Towards a new generation of semantic web applications. IEEE Intelligent Systems 23(3), 80–83 (2008)

    Article  Google Scholar 

  5. Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn., pp. 1–511. Springer (2013)

    Google Scholar 

  6. Gangemi, A., Nuzzolese, A.G., Presutti, V., Draicchio, F., Musetti, A., Ciancarini, P.: Automatic typing of dbpedia entities. In: International Semantic Web Conference (1), pp. 65–81 (2012)

    Google Scholar 

  7. Rizzo, G., Troncy, R., Hellmann, S., Bruemmer, M.: NERD meets NIF: Lifting NLP extraction results to the linked data cloud. In: LDOW, 5th Wks. on Linked Data on the Web, Lyon, France (April 2012)

    Google Scholar 

  8. Isele, R., Bizer, C.: Active learning of expressive linkage rules using genetic programming. J. Web Sem. 23, 2–15 (2013)

    Article  Google Scholar 

  9. Khalili, A., Auer, S., Ngonga Ngomo, A.-C.: ConTEXT – lightweight text analytics using linked data. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 628–643. Springer, Heidelberg (2014)

    Google Scholar 

  10. Mausam, Schmitz, M., Bart, R., Soderland, S., Etzioni, O.: Open language learning for information extraction. In: Proceedings of Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, EMNLP-CONLL (2012)

    Google Scholar 

  11. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv. 33(1), 31–88 (2001)

    Article  Google Scholar 

  12. Nuzzolese, A.G., Gangemi, A., Presutti, V., Ciancarini, P.: Encyclopedic Knowledge Patterns from Wikipedia Links. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 520–536. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Nuzzolese, A.G., Presutti, V., Gangemi, A., Musetti, A., Ciancarini, P.: Aemoo: exploring knowledge on the web. In: WebSci, pp. 272–275 (2013)

    Google Scholar 

  14. Presutti, V., Draicchio, F., Gangemi, A.: Knowledge extraction based on discourse representation theory and linguistic frames. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 114–129. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Presutti, V. et al. (2014). Uncovering the Semantics of Wikipedia Pagelinks. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds) Knowledge Engineering and Knowledge Management. EKAW 2014. Lecture Notes in Computer Science(), vol 8876. Springer, Cham. https://doi.org/10.1007/978-3-319-13704-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13704-9_32

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13703-2

  • Online ISBN: 978-3-319-13704-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics