A Hybrid Semantic Approach to Building Dynamic Maps of Research Communities

  • Francesco Osborne
  • Giuseppe Scavo
  • Enrico Motta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8876)

Abstract

In earlier papers we characterised the notion of diachronictopic-based communities –i.e., communities of people who work on semantically related topics at the same time. These communities are important to enable topic-centred analyses of the dynamics of the research world. In this paper we present an innovative algorithm, called Research Communities Map Builder (RCMB), which is able to automatically link diachronic topic-based communities over subsequent time intervals to identify significant events. These include topic shifts within a research community; the appearance and fading of a community; communities splitting, merging, spawning other communities; and others. The output of our algorithm is a map of research communities, annotated with the detected events, which provides a concise visual representation of the dynamics of a research area. In contrast with existing approaches, RCMB enables a much more fine-grained understanding of the evolution of research communities, with respect to both the granularity of the events and the granularity of the topics. This improved understanding can, for example, inform the research strategies of funders and researchers alike. We illustrate our approach with two case studies, highlighting the main communities and events that characterized the World Wide Web and Semantic Web areas in the 2000 – 2010 decade.

Keywords

Semantic Web Community Detection Change Detection Trend Detection Pattern Recognition Data Mining Scholarly Data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yan, E., Ding, Y., Milojević, S., Sugimoto, C.R.: Topics in dynamic research communities: An exploratory study for the field of information retrieval. Journal of Informetrics 6(1), 140–153 (2012)CrossRefGoogle Scholar
  2. 2.
    Van Eck, N.J., Waltman, L.: Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2), 523–538 (2010)CrossRefGoogle Scholar
  3. 3.
    Upham, S.P., Rosenkopf, L., Ungar, L.H.: Innovating knowledge communities. Scientometrics 83(2), 525–554 (2010)CrossRefGoogle Scholar
  4. 4.
    Yan, E., Ding, Y., Jacob, E.: Overlaying communities and topics. Scientometrics 90(2), 499–513 (2012)CrossRefGoogle Scholar
  5. 5.
    Zhao, Z., Feng, S., Wang, Q., Huang, J.Z., Williams, G.J., Fan, J.: Topic oriented community detection through social objects and link analysis in social networks. Knowledge-Based Systems 26, 164–173 (2012)CrossRefGoogle Scholar
  6. 6.
    Osborne, F., Motta, E.: Mining Semantic Relations between Research Areas. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 410–426. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Ding, Y.: Community detection: topological vs. topical. Journal of Informetrics 5(4), 498–514 (2011)CrossRefGoogle Scholar
  8. 8.
    Upham, S.P., Small, H.: Emerging research fronts in science and technology: patterns of new knowledge development. Scientometrics 83(1), 15–38 (2010)CrossRefGoogle Scholar
  9. 9.
    Osborne, F., Scavo, G., Motta, E.: Identifying diachronic topic-based research communities by clustering shared research trajectories. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 114–129. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Osborne, F., Motta, E., Mulholland, P.: Exploring Scholarly Data with Rexplore. In: Proceedings of the 12th International Semantic Web Conference (2013)Google Scholar
  11. 11.
    Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.M.: Self-organization and identification of web communities. Computer 35(3), 66–70 (2002)CrossRefGoogle Scholar
  12. 12.
    Smyth Guimera, R., Amaral, L.A.N.: Functional cartography of complex metabolic networks. Nature 433(7028), 895–900 (2005)CrossRefGoogle Scholar
  13. 13.
    Racherla, P., Hu, C.: A social network perspective of tourism research collaborations. Annals of Tourism Research 37(4), 1012–1034 (2010)CrossRefGoogle Scholar
  14. 14.
    Hofmann, T.: Probabilistic latent semantic indexing. In: The 22nd Conference on Research and Development in Information Retrieval (pp, Berkeley, CA, pp. 50–57 (1999)Google Scholar
  15. 15.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. Journal of Machine Learning Research 3, 993–1033 (2003)MATHGoogle Scholar
  16. 16.
    Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: extraction and mining of academic social networks. In: Proceeding of KDD 2008, pp. 990–998 (2008)Google Scholar
  17. 17.
    Peroni, S., Shotton, D.: FaBiO and CiTO: ontologies for describing bibliographic resources and citations. In: Web Semantics: Science, Services and Agents on the WWW, vol. 17 (2012)Google Scholar
  18. 18.
    Bezdek, J.C., Ehrlich, R., Full, W.: FCM: The fuzzy c-means clustering algorithm. Computers and Geosciences 10(2), 191–203 (1984)CrossRefGoogle Scholar
  19. 19.
    Olsson, D.M., Nelson, L.S.: The Nelder-Mead simplex procedure for function minimization. Technometrics 17(1), 45–51 (1975)MATHCrossRefGoogle Scholar
  20. 20.
    Neill, D.B., Moore, A.W., Sabhnani, M., Daniel, K.: Detection of emerging space-time clusters. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 218–227. ACM (2005)Google Scholar
  21. 21.
    Sethi, I.K., Patel, N.V.: Statistical approach to scene change detection. In: Symposium on Electronic Imaging: Science & Technology. SPIE (1995)Google Scholar
  22. 22.
    Chiu, S.L.: Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems 2(3), 267–278 (1994)Google Scholar
  23. 23.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5), 28–37 (2001)CrossRefGoogle Scholar
  24. 24.
    Hendler, J.: Where are all the Intelligent Agents? A Letter from the Editor in Intelligent Systems IEEE (May/June 2007)Google Scholar
  25. 25.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: A nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Wu, K.L., Yang, M.S.: A cluster validity index for fuzzy clustering. Pattern Recognition Letters 26(9), 1275–1291 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Francesco Osborne
    • 1
  • Giuseppe Scavo
    • 1
  • Enrico Motta
    • 1
  1. 1.Knowledge Media InstituteThe Open UniversityMilton KeynesUK

Personalised recommendations