Skip to main content

Total Variation Regularization of Displacements in Parametric Image Registration

Part of the Lecture Notes in Computer Science book series (LNIP,volume 8676)


Spatial regularization is indispensable in image registration to avoid both physically implausible displacement fields and potential local minima in optimization methods. Typical \(\ell _2\)-regularization is incapable of correctly recovering non-smooth displacement fields, such as at sliding organ boundaries during time-series of breathing motion. In this paper, Total Variation (TV) regularization is used to allow for accurate registration near such boundaries. We propose a novel formulation of TV-regularization for parametric displacement fields and introduce an efficient and general numerical solution scheme using the Alternating Directions Method of Multipliers (ADMM). Our method has been evaluated on two public datasets of 4D CT lung images as well as a dataset of 4D MR liver images, demonstrating accurate registrations both inside and outside moving organs. The target registration error of our method is 2.56 mm on average in the liver dataset, which indicates an improvement of over 24 % in comparison to other published methods.


  • Medical image registration
  • Total variation
  • 4D CT
  • ADMM

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. 1.

  2. 2.

  3. 3.


  1. Hu, S., Hoffman, E.A., Reinhardt, J.M.: Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans. Med. Imaging 20, 490–498 (2001)

    CrossRef  Google Scholar 

  2. Delmon, V., Rit, S., Pinho, R., Sarrut, D.: Registration of sliding objects using direction dependent B-splines decomposition. Phys. Med. Biol. 58, 1303–1314 (2013)

    CrossRef  Google Scholar 

  3. Kiriyanthan, S., Fundana, K., Cattin, P.C.: Discontinuity preserving registration of abdominal MR images with apparent sliding organ motion. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging. LNCS, vol. 7029, pp. 231–239. Springer, Heidelberg (2012)

    Google Scholar 

  4. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66, 1632–1648 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. Castillo, E., Castillo, R., Martinez, J., Shenoy, M., Guerrero, T.: Four-dimensional deformable image registration using trajectory modeling. Phys. Med. Biol. 55, 305–327 (2010)

    CrossRef  Google Scholar 

  6. Risser, L., Vialard, F.X., Baluwala, H.Y., Schnabel, J.A.: Piecewise-diffeomorphic image registration: Application to the motion estimation between 3D CT lung images with sliding conditions. Med. Image Anal. 17, 182–193 (2013)

    CrossRef  Google Scholar 

  7. Papież, B.W., Heinrich, M.P., Risser, L., Schnabel, J.A.: Complex lung motion estimation via adaptive bilateral filtering of the deformation field. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 25–32. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  8. Tanner, C., Samei, G., Székely, G.: Investigating anisotropic diffusion for the registration of abdominal MR images. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 484–7 (2013)

    Google Scholar 

  9. Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2432–2439 (2010)

    Google Scholar 

  10. Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Med. Image Anal. 12, 731–741 (2008)

    CrossRef  Google Scholar 

  11. Heinrich, H., Jenkinson, M., Brady, M., Schnabel, J.A.: MRF-based deformable registration and ventilation estimation of lung CT. IEEE Trans. Med. Imaging 32, 1239–1248 (2013)

    CrossRef  Google Scholar 

  12. Pock, T., Urschler, M., Zach, C., Beichel, R.R., Bischof, H.: A duality based algorithm for TV-\(\mathit{L}^{1}\)-optical-flow image registration. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 511–518. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  13. Hermann, S., Werner, R.: TV-L\(_{1}\)-based 3D medical image registration with the census cost function. In: Klette, R., Rivera, M., Satoh, S. (eds.) PSIVT 2013. LNCS, vol. 8333, pp. 149–161. Springer, Heidelberg (2014)

    CrossRef  Google Scholar 

  14. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18, 712–721 (1999)

    CrossRef  Google Scholar 

  15. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2011)

    CrossRef  Google Scholar 

  16. Figueiredo, M.A., Bioucas-Dias, J.M.: Algorithms for imaging inverse problems under sparsity regularization. In: IEEE Int Workshop on Cognitive Information Processing (CIP), pp. 1–6 (2012)

    Google Scholar 

  17. Schwarz, L.A.: Non-rigid registration using free-form deformations. Ph.D. thesis, Technische Universität München, Germany (2007)

    Google Scholar 

  18. Vandemeulebroucke, J., Sarrut, D., Clarysse, P., et al.: The POPI-model, a point-validated pixel-based breathing thorax model. In: International Conference on Computers in Radiation Therapy (ICCR), pp. 195–9 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Valeriy Vishnevskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Vishnevskiy, V., Gass, T., Székely, G., Goksel, O. (2014). Total Variation Regularization of Displacements in Parametric Image Registration. In: Yoshida, H., Näppi, J., Saini, S. (eds) Abdominal Imaging. Computational and Clinical Applications. ABD-MICCAI 2014. Lecture Notes in Computer Science(), vol 8676. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13691-2

  • Online ISBN: 978-3-319-13692-9

  • eBook Packages: Computer ScienceComputer Science (R0)