Abstract
Spatial regularization is indispensable in image registration to avoid both physically implausible displacement fields and potential local minima in optimization methods. Typical \(\ell _2\)-regularization is incapable of correctly recovering non-smooth displacement fields, such as at sliding organ boundaries during time-series of breathing motion. In this paper, Total Variation (TV) regularization is used to allow for accurate registration near such boundaries. We propose a novel formulation of TV-regularization for parametric displacement fields and introduce an efficient and general numerical solution scheme using the Alternating Directions Method of Multipliers (ADMM). Our method has been evaluated on two public datasets of 4D CT lung images as well as a dataset of 4D MR liver images, demonstrating accurate registrations both inside and outside moving organs. The target registration error of our method is 2.56 mm on average in the liver dataset, which indicates an improvement of over 24 % in comparison to other published methods.
Keywords
- Medical image registration
- Total variation
- 4D CT
- ADMM
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Hu, S., Hoffman, E.A., Reinhardt, J.M.: Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans. Med. Imaging 20, 490–498 (2001)
Delmon, V., Rit, S., Pinho, R., Sarrut, D.: Registration of sliding objects using direction dependent B-splines decomposition. Phys. Med. Biol. 58, 1303–1314 (2013)
Kiriyanthan, S., Fundana, K., Cattin, P.C.: Discontinuity preserving registration of abdominal MR images with apparent sliding organ motion. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging. LNCS, vol. 7029, pp. 231–239. Springer, Heidelberg (2012)
Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66, 1632–1648 (2006)
Castillo, E., Castillo, R., Martinez, J., Shenoy, M., Guerrero, T.: Four-dimensional deformable image registration using trajectory modeling. Phys. Med. Biol. 55, 305–327 (2010)
Risser, L., Vialard, F.X., Baluwala, H.Y., Schnabel, J.A.: Piecewise-diffeomorphic image registration: Application to the motion estimation between 3D CT lung images with sliding conditions. Med. Image Anal. 17, 182–193 (2013)
Papież, B.W., Heinrich, M.P., Risser, L., Schnabel, J.A.: Complex lung motion estimation via adaptive bilateral filtering of the deformation field. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 25–32. Springer, Heidelberg (2013)
Tanner, C., Samei, G., Székely, G.: Investigating anisotropic diffusion for the registration of abdominal MR images. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 484–7 (2013)
Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2432–2439 (2010)
Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Med. Image Anal. 12, 731–741 (2008)
Heinrich, H., Jenkinson, M., Brady, M., Schnabel, J.A.: MRF-based deformable registration and ventilation estimation of lung CT. IEEE Trans. Med. Imaging 32, 1239–1248 (2013)
Pock, T., Urschler, M., Zach, C., Beichel, R.R., Bischof, H.: A duality based algorithm for TV-\(\mathit{L}^{1}\)-optical-flow image registration. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 511–518. Springer, Heidelberg (2007)
Hermann, S., Werner, R.: TV-L\(_{1}\)-based 3D medical image registration with the census cost function. In: Klette, R., Rivera, M., Satoh, S. (eds.) PSIVT 2013. LNCS, vol. 8333, pp. 149–161. Springer, Heidelberg (2014)
Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18, 712–721 (1999)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2011)
Figueiredo, M.A., Bioucas-Dias, J.M.: Algorithms for imaging inverse problems under sparsity regularization. In: IEEE Int Workshop on Cognitive Information Processing (CIP), pp. 1–6 (2012)
Schwarz, L.A.: Non-rigid registration using free-form deformations. Ph.D. thesis, Technische Universität München, Germany (2007)
Vandemeulebroucke, J., Sarrut, D., Clarysse, P., et al.: The POPI-model, a point-validated pixel-based breathing thorax model. In: International Conference on Computers in Radiation Therapy (ICCR), pp. 195–9 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Vishnevskiy, V., Gass, T., Székely, G., Goksel, O. (2014). Total Variation Regularization of Displacements in Parametric Image Registration. In: Yoshida, H., Näppi, J., Saini, S. (eds) Abdominal Imaging. Computational and Clinical Applications. ABD-MICCAI 2014. Lecture Notes in Computer Science(), vol 8676. Springer, Cham. https://doi.org/10.1007/978-3-319-13692-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-13692-9_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13691-2
Online ISBN: 978-3-319-13692-9
eBook Packages: Computer ScienceComputer Science (R0)