Skip to main content

Agronomic Field Trait Phenomics

  • Chapter
  • First Online:
Phenomics

Abstract

Recent advances in high-throughput phenotyping allow breeders to collect phenotypic data with a level of accuracy that was impossible to achieve previously. However, many of these technologies depend on leveraging-controlled environments like green houses or growth chambers. While these controlled phenotypes can have strategic value for gene discovery, their relevance for breeding and understanding genotype x environment interactions to predict field performance is an active field of study and currently limited, at best. This chapter deals with various technologies that have empowered the collection of phenotypic data directly under field conditions and the relative advantages and disadvantages of using them to collect agronomic phenotypes. Important considerations to be aware of before planning a high-throughput phenotyping experiment that use technologies like field spectroscopy and remote sensing are also discussed including a review of various publically available and/or commercial aerial, ground-based and root phenotyping platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acquaah G (2007) Principles of plant genetics and breeding. Blackwell Publisher, Malden

    Google Scholar 

  • Allen B (1998) Remote Sensing and Lasers. Accessed 17 June 2014 http://www.nasa.gov/centers/langley/news/factsheets/RemoteSensing.html

  • Andrade-Sanchez P, Gore M, Heun J, Thorp K, Carmo-Silva A, French A, Salvucci M, White J (2013) Development and evaluation of a field-based high-throughput phenotyping platform. Funct Plant Biol 41(1):68–79

    Article  Google Scholar 

  • Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19(1):52–61

    Article  CAS  PubMed  Google Scholar 

  • Araus J, Slafer G, Royo C, Serret M (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27(6):377–412

    Article  Google Scholar 

  • Asoro F, Newell M, Beavis W, Scott M, Jannink J (2011) Accuracy and training population design for genomic selection on quantitative traits in elite north american oats. Plant Genome 4(2):132–144

    Article  Google Scholar 

  • Barton CVM, Montagu KD (2004) Detection of tree roots and determination of root diameters by ground penetrating radar under optimal conditions. Tree Physiol 24(12):1323–1331

    Article  PubMed  Google Scholar 

  • Borém A, Fritsche-Neto R (2014) Omics in plant breeding. Ames: Wiley Blackwell

    Google Scholar 

  • Cabrera-Bosquet L, Sanchez C, Rosales A, Palacios-Rojas N, Araus J (2011) Near-infrared reflectance spectroscopy (NIRS) assessment of delta O-18 and nitrogen and ash contents for improved yield potential and drought adaptation in maize. J Agric Food Chem 59(2):467–474

    Article  CAS  PubMed  Google Scholar 

  • Chapman S, Merz T, Chan A, Jackway P, Hrabar S, Dreccer F, Holland E, Zheng B, Ling J, Jimenez-Berni J (2014) Pheno-copter: a low-altitude, autonomous remote-sensing robotic helicopter for high-throughput field-based phenotyping. Agronomy 4:279–301

    Google Scholar 

  • Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126(4):867–887

    Article  PubMed Central  PubMed  Google Scholar 

  • Comar A, Burger P, de Solan B, Baret F, Daumard F, Hanocq J (2012) A semi-automatic system for high throughput phenotyping wheat cultivars in-field conditions: description and first results. Funct Plant Biol 39(10–11):914–924

    Article  Google Scholar 

  • Frey T (2013) Agriculture, the new games of drones. The futurist—a magazine of forecasts, trends and ideas about the future

    Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16(12):635–644

    Article  CAS  PubMed  Google Scholar 

  • GEF/UNCCD (2011) Land for life: securing our common future. Global Environment Facility, Washington, DC

    Google Scholar 

  • Goth B (2014) Behind the science: researcher helps remote sensing soar. Accessed 17 July 2014 http://blog.cimmyt.org/behind-the-science-researcher-helps-remote-sensing-soar/

  • Heffner EL, Sorrells ME, Jannink J (2009) Genomic selection for crop improvement. Crop Sci 49(1):1–12

    Article  CAS  Google Scholar 

  • Hirano Y, Dannoura M, Aono K, Igarashi T, Ishii M, Yamase K, Makita N, Kanazawa Y (2009) Limiting factors in the detection of tree roots using ground-penetrating radar. Plant Soil 319(1):15–24

    Article  CAS  Google Scholar 

  • Hosoi F, Omasa K (2007) Factors contributing to accuracy in the estimation of the woody canopy leaf area density profile using 3D portable lidar imaging. J Exp Bot 58(12):3463–3473 doi: 10.1093/jxb/erm203

    Article  CAS  PubMed  Google Scholar 

  • Hunting K (2013) Do you really know your fields? http://farmindusrynews.com/site/farmindusrynews.com/files/uploads/2013/07/FIN_22-25_UAVs.pdf

  • Jackson RD, Robinson BF (1985) Field evaluation of the temperature stability of a multispectral radiometer. Remote Sens Environ 17(1):103–108

    Article  Google Scholar 

  • Khorram S, Koch FH, van der Wiele CF, Nelson SAC (2012) Remote sensing. Springer, Boston

    Book  Google Scholar 

  • Kimes DS, Kirchner JA (1982) Irradiance measurement errors due to the assumption of a lambertian reference panel. Remote Sens Environ 12(2):141–149

    Article  Google Scholar 

  • McCouch SR, McNally KL, Wang W, Hamilton RS (2012) Genomics of gene banks: a case study in rice. Am J Bot 99(2):407–423

    Article  PubMed  Google Scholar 

  • Melillo JM, Richmond TC, Yohe GW (eds) (2014) Climate change impacts in the united states: the third national climate assessment. U.S. Global Change Research Program, Washington, DC

    Google Scholar 

  • Milton EJ (1987) Review article principles of field spectroscopy. Int J Remote Sens 8(12):1807–1827

    Article  Google Scholar 

  • Montes JM, Technow F, Dhillon BS, Mauch F, Melchinger AE (2011) High-throughput non-destructive biomass determination during early plant development in maize under field conditions. Field Crops Res 121(2):268–273

    Article  Google Scholar 

  • Munns R, James RA, Sirault XRR, Furbank RT, Jones HG (2010) New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J Exp Bot 61(13):3499–3507

    Article  CAS  PubMed  Google Scholar 

  • Ruixiu S, Wilkerson JB, Wilhelm LR, Tompkins FD (1989) A microcomputer-based morphometer for bush-type plants. Comput Electron Agric 4(1):43–58

    Article  Google Scholar 

  • Rundquist D, Perk R, Leavitt B, Keydan G, Gitelson A (2004) Collecting spectral data over cropland vegetation using machine-positioning versus hand-positioning of the sensor. Comput Electron Agric 43(2):173–178

    Article  Google Scholar 

  • ScanalyzerField (2014) A wide range of choices for the quantitative, non-destructive analysis of different crops or model plants in field conditions [Internet]. Accessed 7 July 2014 http://www.lemnatec.com/products/hardware-solutions/scanalyzer-field/#.U7r4yvldV8E

  • Smartfieldâ„¢ (2014) Growing a greener future: equipment [Internet]. Accessed 7 July 2014 http://www.smartfield.com/smartfield-products/equipment/

  • Stefan S, Jörge V, Dirk V, Matthias E (2013) Digital phenotyping of field crops under field conditions. LemnaTec—plant phenomics workshop, 1/11/2013. Plant and Animal Genome XXI, San Diego

    Google Scholar 

  • Tanikawa T, Hirano Y, Dannoura M, Yamase K, Aono K, Ishii M, Igarashi T, Ikeno H, Kanazawa Y (2013) Root orientation can affect detection accuracy of ground-penetrating radar. Plant Soil 373(1):317–327

    Article  CAS  Google Scholar 

  • Thompson SM, Cossani CM, Ibrahim AMH, Reynolds MP, Goodman D, Hays DB (2013) Estimating wheat root biomass using ground penetrating radar. ASA, CSSA & SSSA International Annual Meetings, 9/3, Tampa, Florida, USA. ASA, CSSA & SSSA International Annual Meetings, Tampa

    Google Scholar 

  • Tuberosa R (2012) Phenotyping for drought tolerance of crops in the genomics era. Front Physiol 3:347

    Article  PubMed Central  PubMed  Google Scholar 

  • United Nations (2013) World population prospects: the 2012 revision, key findings and advance tables. Department of Economic and Social Affairs, New York

    Google Scholar 

  • Van Beem J, Smith ME, Zobel RW (1998) Estimating root mass in maize using a portable capacitance meter. Agron J 90(4):566–570

    Article  Google Scholar 

  • White J, Conley M (2013) A flexible, low-cost cart for proximal sensing. Crop Sci 53(4):1646–1649

    Article  Google Scholar 

  • Zenone T, Seufert G, Morelli G, Teobaldelli M, Fischanger F, Matteucci M, Sordini M, Armani A, Ferre C, Chiti T (2008) Preliminary use of ground-penetrating radar and electrical resistivity tomography to study tree roots in pine forests and poplar plantations. Funct Plant Biol 35(10):1047–1058

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua N. Cobb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Palanichamy, D., Cobb, J.N. (2015). Agronomic Field Trait Phenomics. In: Fritsche-Neto, R., Borém, A. (eds) Phenomics. Springer, Cham. https://doi.org/10.1007/978-3-319-13677-6_6

Download citation

Publish with us

Policies and ethics