Skip to main content

Well-Differentiated Thyroid Cancer: Papillary, Follicular, and Oncocytic (Hürthle) Cell Cancer

  • Chapter
  • First Online:
Surgical Endocrinopathies
  • 877 Accesses

Abstract

The incidence of thyroid cancer is increasing worldwide, and although the rising rates appear to be coincident with the widespread use of high-resolution ultrasound imaging, early detection may not be the only reason for the increased incidence as the trend is observed in both genders, among all ages, tumor sizes, and different racial and ethnic groups. The majority (95–98 %) of thyroid cancers are well differentiated and include papillary, follicular, and oncocytic (Hürthle) cell carcinomas. This chapter discusses risk factors, molecular mechanisms, prognosis, available treatment modalities, and management strategies for patients with differentiated thyroid cancer.

Editors’ Note: This chapter and the chapter “Update of the Treatment Guidelines for Well-Differentiated Thyroid Cancer” by Dr. Glenn and Wang are excellent companion pieces. We highly suggest reading them together to appreciate the many nuances of therapy for thyroid nodules and thyroid cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howlader N NA, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA. editors. SEER cancer statistics review, 1975–2011, National Cancer Institute. Bethesda, MD. Based on November 2013 SEER data submission, posted to the SEER web site, April 2014.

    Google Scholar 

  2. Kilfoy BA, Zheng T, Holford TR, Han X, Ward MH, Sjodin A, et al. International patterns and trends in thyroid cancer incidence, 1973–2002. Cancer Causes Control. 2009;20(5):525–31. PubMed PMID: 19016336. Pubmed Central PMCID: 2788231.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 2006;295(18):2164–7. PubMed PMID: 16684987.

    Article  CAS  PubMed  Google Scholar 

  4. Chen AY, Jemal A, Ward EM. Increasing incidence of differentiated thyroid cancer in the United States, 1988–2005. Cancer. 2009 Aug 15;115(16):3801–7. PubMed PMID: 19598221.

    Article  PubMed  Google Scholar 

  5. Aschebrook-Kilfoy B, Kaplan EL, Chiu BC, Angelos P, Grogan RH. The acceleration in PTC incidence rates is similar among racial and ethnic groups in the United States. Ann Surg Oncol. 2013;20(8):2746–53. PubMed PMID: 23504142.

    Article  PubMed  Google Scholar 

  6. Junquiera L, Carneiro J. Basic histology: text and atlas. 10th ed. Rio de Janeiro: McGraw-Hill; 2005.

    Google Scholar 

  7. LiVolsi VA. Papillary thyroid carcinoma: an update. Mod Pathol. 2011;24(Suppl 2):S1–9. PubMed PMID: 21455196.

    Article  CAS  PubMed  Google Scholar 

  8. LiVolsi VA, Baloch ZW. Follicular neoplasms of the thyroid: view, biases, and experiences. Adv Anat Pathol. 2004;11(6):279–87. PubMed PMID: 15505528.

    Article  PubMed  Google Scholar 

  9. Cheung CC, Ezzat S, Ramyar L, Freeman JL, Asa SL. Molecular basis off hurthle cell papillary thyroid carcinoma. J Clin Endocrinol Metabol. 2000;85(2):878–82. PubMed PMID: 10690905.

    CAS  Google Scholar 

  10. Hundahl SA, Fleming ID, Fremgen AM, Menck HR. A national cancer data base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995 [see commetns]. Cancer. 1998;83(12):2638–48. PubMed PMID: 9874472.

    Article  CAS  PubMed  Google Scholar 

  11. Haigh PI, Urbach DR. The treatment and prognosis of Hurthle cell follicular thyroid carcinoma compared with its non-Hurthle cell counterpart. Surgery. 2005;138(6):1152–7; discussion 7–8. PubMed PMID: 16360403.

    Article  PubMed  Google Scholar 

  12. Schneider AB, Ron E, Lubin J, Stovall M, Gierlowski TC. Dose-response relationships for radiation-induced thyroid cancer and thyroid nodules: evidence for the prolonged effects of radiation on the thyroid. J Clinic Endocrinol Metab. 1993;77(2):362–9. PubMed PMID: 8345040.

    CAS  Google Scholar 

  13. Mazonakis M, Tzedakis A, Damilakis J, Gourtsoyiannis N. Thyroid dose from common head and neck CT examinations in children: is there an excess risk for thyroid cancer induction? Euro Radiol. 2007;17(5):1352–7. PubMed PMID: 17021703.

    Article  Google Scholar 

  14. Sinnott B, Ron E, Schneider AB. Exposing the thyroid to radiation: a review of its current extent, risks, and implications. Endocrine Rev. 2010;31(5):756–73. PubMed PMID: 20650861. Pubmed Central PMCID: 3365850.

    Article  Google Scholar 

  15. Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemio. 2013;2013:965212. PubMed PMID: 23737785. Pubmed Central PMCID: 3664492.

    Article  Google Scholar 

  16. Pappa T, Alevizaki M. Obesity and thyroid cancer: a clinical update. Thyroid. 2014;24(2):190–9. PubMed PMID: 23879222.

    Article  CAS  PubMed  Google Scholar 

  17. Jarrar AM, Milas M, Mitchell J, Laguardia L, O'Malley M, Berber E, et al. Screening for thyroid cancer in patients with familial adenomatous polyposis. Ann Surg. 2011;253(3):515–21. PubMed PMID: 21173694.

    Article  PubMed  Google Scholar 

  18. Milas M, Mester J, Metzger R, Shin J, Mitchell J, Berber E, et al. Should patients with Cowden syndrome undergo prophylactic thyroidectomy? Surgery. 2012;152(6):1201–10. PubMed PMID: 23158187.

    Article  PubMed  Google Scholar 

  19. Ngeow J, Mester J, Rybicki LA, Ni Y, Milas M, Eng C. Incidence and clinical characteristics of thyroid cancer in prospective series of individuals with Cowden and Cowden-like syndrome characterized by germline PTEN, SDH, or KLLN alterations. J Clin Endocrinol Metab. 2011;96(12):E2063–71. PubMed PMID: 21956414. Pubmed Central PMCID: 3232626.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Salpea P, Stratakis CA. Carney complex and McCune Albright syndrome: an overview of clinical manifestations and human molecular genetics. Mol Cell Endocrinol. 2014;386(1–2):85–91. PubMed PMID: 24012779. Pubmed Central PMCID: 3943598.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Metzger R, Milas M. Inherited cancer syndromes and the thyroid: an update. Curr Opin Oncol. 2014;26(1):51–61. PubMed PMID: 24300902.

    Article  CAS  PubMed  Google Scholar 

  22. Fallah M, Pukkala E, Tryggvadottir L, Olsen JH, Tretli S, Sundquist K, et al. Risk of thyroid cancer in first-degree relatives of patients with non-medullary thyroid cancer by histology type and age at diagnosis: a joint study from five Nordic countries. J Med Genet. 2013;50(6):373–82. PubMed PMID: 23585692.

    Article  CAS  PubMed  Google Scholar 

  23. Mazeh H, Sippel RS. Familial nonmedullary thyroid carcinoma. Thyroid. 2013;23(9):1049–56. PubMed PMID: 23734600.

    Article  PubMed  Google Scholar 

  24. Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013;13(3):184–99. PubMed PMID: 23429735.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7(10):569–80. PubMed PMID: 21878896.

    Article  CAS  PubMed  Google Scholar 

  26. Tufano RP, Teixeira GV, Bishop J, Carson KA, Xing M. BRAF mutation in PTC and its value in tailoring initial treatment: a systematic review and meta-analysis. Medicine. 2012;91(5):274–86. PubMed PMID: 22932786.

    Article  CAS  PubMed  Google Scholar 

  27. Xing M. BRAF mutation in PTC: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007;28(7):742–62. PubMed PMID: 17940185.

    Article  CAS  PubMed  Google Scholar 

  28. Howell GM, Carty SE, Armstrong MJ, Lebeau SO, Hodak SP, Coyne C, et al. Both BRAF V600E mutation and older age (> / = 65 years) are associated with recurrent PTC. Ann Surg Oncol. 2011;18(13):3566–71. PubMed PMID: 21594703.

    Article  PubMed  Google Scholar 

  29. Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, et al. Association between BRAF V600E mutation and mortality in patients with PTC. JAMA. 2013;309(14):1493–501. PubMed PMID: 23571588.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Howell GM, Hodak SP, Yip L. RAS mutations in thyroid cancer. Oncologist. 2013;18(8):926–32. PubMed PMID: 23873720. Pubmed Central PMCID: 3755930.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metabol. 2011;96(11):3390–7. PubMed PMID: 21880806. Pubmed Central PMCID: 3205883.

    Article  CAS  Google Scholar 

  32. Tallini G, Asa SL. RET oncogene activation in papillary thyroid carcinoma. Adv Anat Pathol. 2001;8(6):345–54. PubMed PMID: 11707626.

    Article  CAS  PubMed  Google Scholar 

  33. Nikiforov YE. RET/PTC rearrangement in thyroid tumors. Endocr Pathol. 2002;13(1):3–16. PubMed PMID: 12114746.

    Article  CAS  PubMed  Google Scholar 

  34. Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 1997;57(9):1690–4. PubMed PMID: 9135009.

    CAS  PubMed  Google Scholar 

  35. Fenton CL, Lukes Y, Nicholson D, Dinauer CA, Francis GL, Tuttle RM. The ret/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J Clin Endocrinol Metabol. 2000;85(3):1170–5. PubMed PMID: 10720057.

    CAS  Google Scholar 

  36. Adeniran AJ, Zhu Z, Gandhi M, Steward DL, Fidler JP, Giordano TJ, et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol. 2006;30(2):216–22. PubMed PMID: 16434896.

    Article  PubMed  Google Scholar 

  37. Jung CK, Little MP, Lubin JH, Brenner AV, Wells SA Jr, Sigurdson AJ, et al. The increase in thyroid cancer incidence during the last four decades is accompanied by a high frequency of BRAF mutations and a sharp increase in RAS mutations. J Clin Endocrinol Metabol. 2014 Feb;99(2):E276–85. PubMed PMID: 24248188.

    Google Scholar 

  38. Maximo V, Botelho T, Capela J, Soares P, Lima J, Taveira A, et al. Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hurthle cell) tumours of the thyroid. Brit J Cancer. 2005;92(10):1892–8. PubMed PMID: 15841082. Pubmed Central PMCID: 2361763.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Nikiforova MN, Wald AI, Roy S, Durso MB, Nikiforov YE. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metabol. 2013;98(11):E1852–60. PubMed PMID: 23979959. Pubmed Central PMCID: 3816258.

    Article  CAS  Google Scholar 

  40. Landa I, Ganly I, Chan TA, Mitsutake N, Matsuse M, Ibrahimpasic T, et al. Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease. J Clin Endocrinol Metabol. 2013;98(9):E1562–6. PubMed PMID: 23833040. Pubmed Central PMCID: 3763971.

    Article  CAS  Google Scholar 

  41. Liu X, Bishop J, Shan Y, Pai S, Liu D, Murugan AK, et al. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer. 2013;20(4):603–10. PubMed PMID: 23766237. Pubmed Central PMCID: 3782569.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Melo M, da Rocha AG, Vinagre J, Batista R, Peixoto J, Tavares C, et al. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metabol. 2014;99(5):E754–65. PubMed PMID: 24476079.

    Article  CAS  Google Scholar 

  43. Moon WJ, Jung SL, Lee JH, Na DG, Baek JH, Lee YH, et al. Benign and malignant thyroid nodules: US differentiation–multicenter retrospective study. Radiology. 2008;247(3):762–70. PubMed PMID: 18403624.

    Article  PubMed  Google Scholar 

  44. Baloch ZW, LiVolsi VA, Asa SL, Rosai J, Merino MJ, Randolph G, et al. Diagnostic terminology and morphologic criteria for cytologic diagnosis of thyroid lesions: a synopsis of the National Cancer Institute Thyroid Fine-Needle Aspiration State of the Science Conference. Diagn Cytopathol. 2008;36(6):425–37. PubMed PMID: 18478609.

    Article  PubMed  Google Scholar 

  45. Yip L WL, Armstrong MJ, Silbermann A, McCoy KL, Stang MT, et al. A clinical algorithm for fine-needle aspiration molecular testing effectively guides the appropriate extent of initial thyroidectomy. Ann Surg, In press. 2013.

    Google Scholar 

  46. Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. New Engl J Med. 2012;367(8):705–15. PubMed PMID: 22731672.

    Article  CAS  PubMed  Google Scholar 

  47. Milas M, Mazzaglia P, Chia SY, Skugor M, Berber E, Reddy S, et al. The utility of peripheral thyrotropin mRNA in the diagnosis of follicular neoplasms and surveillance of thyroid cancers. Surgery. 2007;141(2):137–46; discussion 46. PubMed PMID: 17263967.

    Article  PubMed  Google Scholar 

  48. Wharry LI, McCoy KL, Stang MT, Armstrong MJ, Lebeau SO, Tublin ME, et al. Thyroid nodules (> / = 4 cm): can ultrasound and cytology reliably exclude cancer? World J Surg. 2014 Mar;38(3):614–21. PubMed PMID: 24081539.

    Google Scholar 

  49. Banks ND, Kowalski J, Tsai HL, Somervell H, Tufano R, Dackiw AP, et al. A diagnostic predictor model for indeterminate or suspicious thyroid FNA samples. Thyroid. 2008;18(9):933–41. PubMed PMID: 18788917.

    Article  CAS  PubMed  Google Scholar 

  50. Mazzaferri EL, Kloos RT. Clinical review 128: current approaches to primary therapy for papillary and FTC. J Clin Endocrinol Metabol. 2001;86(4):1447–63. PubMed PMID: 11297567.

    Article  CAS  Google Scholar 

  51. Hay ID, Bergstralh EJ, Grant CS, McIver B, Thompson GB, van Heerden JA, et al. Impact of primary surgery on outcome in 300 patients with pathologic tumor-node-metastasis stage III papillary thyroid carcinoma treated at one institution from 1940 through 1989. Surgery. 1999;126(6):1173–81; discussion 81-2. PubMed PMID: 10598204.

    Article  CAS  PubMed  Google Scholar 

  52. Bilimoria KY, Bentrem DJ, Ko CY, Stewart AK, Winchester DP, Talamonti MS, et al. Extent of surgery affects survival for papillary thyroid cancer. Ann Surg. 2007;246(3):375–81; discussion 81-4. PubMed PMID: 17717441. Pubmed Central PMCID: 1959355.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Sosa JA, Bowman HM, Tielsch JM, Powe NR, Gordon TA, Udelsman R. The importance of surgeon experience for clinical and economic outcomes from thyroidectomy. Ann Surg. 1998;228(3):320–30. PubMed PMID: 9742915. Pubmed Central PMCID: 1191485.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Roti E, degli Uberti EC, Bondanelli M, Braverman LE. Thyroid papillary microcarcinoma: a descriptive and meta-analysis study. Euro J Endocrinol. 2008;159(6):659–73. PubMed PMID: 18713843.

    Article  CAS  Google Scholar 

  55. Ito Y, Miyauchi A, Inoue H, Fukushima M, Kihara M, Higashiyama T, et al. An observational trial for papillary thyroid microcarcinoma in Japanese patients. World J Surg. 2010;34(1):28–35. PubMed PMID: 20020290.

    Article  PubMed  Google Scholar 

  56. Bongiovanni M, Spitale A, Faquin WC, Mazzucchelli L, Baloch ZW. The Bethesda system for reporting thyroid cytopathology: a meta-analysis. Acta Cytol. 2012;56(4):333–9. PubMed PMID: 22846422.

    Article  PubMed  Google Scholar 

  57. American Thyroid Association Guidelines Taskforce on Thyroid N, Differentiated Thyroid C, Cooper DS, Doherty GM, Haugen BR, Kloos RT, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19(11):1167–214. PubMed PMID: 19860577.

    Article  PubMed  Google Scholar 

  58. Zaydfudim V, Feurer ID, Griffin MR, Phay JE. The impact of lymph node involvement on survival in patients with papillary and follicular thyroid carcinoma. Surgery. 2008;144(6):1070–7; discussion 7-8. PubMed PMID: 19041020.

    Article  PubMed  Google Scholar 

  59. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med. 1994;97(5):418–28. PubMed PMID: 7977430.

    Article  CAS  PubMed  Google Scholar 

  60. Ito Y, Higashiyama T, Takamura Y, Miya A, Kobayashi K, Matsuzuka F, et al. Risk factors for recurrence to the lymph node in papillary thyroid carcinoma patients without preoperatively detectable lateral node metastasis: validity of prophylactic modified radical neck dissection. World J Surg. 2007;31(11):2085–91. PubMed PMID: 17885787.

    Article  PubMed  Google Scholar 

  61. Kushchayeva Y, Duh QY, Kebebew E, Clark OH. Prognostic indications for Hurthle cell cancer. World J Surg. 2004;28(12):1266–70. PubMed PMID: 15517492.

    Article  PubMed  Google Scholar 

  62. Witte J, Goretzki PE, Dieken J, Simon D, Roher HD. Importance of lymph node metastases in follicular thyroid cancer. World J Surg. 2002;26(8):1017–22. PubMed PMID: 12045860.

    Article  PubMed  Google Scholar 

  63. American Thyroid Association Surgery Working G, American Association of Endocrine S, American Academy of O-H, Neck S, American H, Neck S, et al. Consensus statement on the terminology and classification of central neck dissection for thyroid cancer. Thyroid. 2009;19(11):1153–8. PubMed PMID: 19860578.

    Article  Google Scholar 

  64. Wang TS, Cheung K, Farrokhyar F, Roman SA, Sosa JA. A meta-analysis of the effect of prophylactic central compartment neck dissection on locoregional recurrence rates in patients with papillary thyroid cancer. Ann Surg Oncol. 2013;20(11):3477–83. PubMed PMID: 23846784.

    Article  PubMed  Google Scholar 

  65. Mazzaferri EL, Doherty GM, Steward DL. The pros and cons of prophylactic central compartment lymph node dissection for papillary thyroid carcinoma. Thyroid. 2009;19(7):683–9. PubMed PMID: 19583485.

    Article  PubMed  Google Scholar 

  66. Edge SB, American Joint Committee on Cancer., American Cancer Society. AJCC cancer staging handbook: from the AJCC cancer staging manual. 7th ed. New York: Springer; 2010. xix, 718 p.

    Google Scholar 

  67. Biliotti GC, Martini F, Vezzosi V, Seghi P, Tozzi F, Castagnoli A, et al. Specific features of differentiated thyroid carcinoma in patients over 70 years of age. J Surg Oncol. 2006;93(3):194–8. PubMed PMID: 16482598.

    Article  CAS  PubMed  Google Scholar 

  68. Jonklaas J, Cooper DS, Ain KB, Bigos T, Brierley JD, Haugen BR, et al. Radioiodine therapy in patients with stage I differentiated thyroid cancer. Thyroid. 2010;20(12):1423–4. PubMed PMID: 21054207.

    Article  PubMed  Google Scholar 

  69. Jonklaas J, Sarlis NJ, Litofsky D, Ain KB, Bigos ST, Brierley JD, et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid. 2006;16(12):1229–42. PubMed PMID: 17199433.

    Article  PubMed  Google Scholar 

  70. Lopez-Penabad L, Chiu AC, Hoff AO, Schultz P, Gaztambide S, Ordonez NG, et al. Prognostic factors in patients with Hurthle cell neoplasms of the thyroid. Cancer. 2003;97(5):1186–94. PubMed PMID: 12599224.

    Article  PubMed  Google Scholar 

  71. Pacini F, Ladenson PW, Schlumberger M, Driedger A, Luster M, Kloos RT, et al. Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma: results of an international, randomized, controlled study. J Clin Endocrinol Metabol. 2006;91(3):926–32. PubMed PMID: 16384850.

    Article  CAS  Google Scholar 

  72. Taieb D, Sebag F, Cherenko M, Baumstarck-Barrau K, Fortanier C, Farman-Ara B, et al. Quality of life changes and clinical outcomes in thyroid cancer patients undergoing radioiodine remnant ablation (RRA) with recombinant human TSH (rhTSH): a randomized controlled study. Clin Endocrinol. 2009;71(1):115–23. PubMed PMID: 18803678.

    Article  CAS  Google Scholar 

  73. Mallick U, Harmer C, Yap B, Wadsley J, Clarke S, Moss L, et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. New Engl J Med. 2012;366(18):1674–85. PubMed PMID: 22551128.

    Article  CAS  PubMed  Google Scholar 

  74. Schlumberger M, Catargi B, Borget I, Deandreis D, Zerdoud S, Bridji B, et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. New Engl J Med. 2012;366(18):1663–73. PubMed PMID: 22551127.

    Article  CAS  PubMed  Google Scholar 

  75. Garsi JP, Schlumberger M, Rubino C, Ricard M, Labbe M, Ceccarelli C, et al. Therapeutic administration of 131I for differentiated thyroid cancer: radiation dose to ovaries and outcome of pregnancies. J Nucl Med. 2008;49(5):845–52. PubMed PMID: 18413399.

    Article  PubMed  Google Scholar 

  76. Rubino C, de Vathaire F, Dottorini ME, Hall P, Schvartz C, Couette JE, et al. Second primary malignancies in thyroid cancer patients. Brit J Cancer. 2003;89(9):1638–44. PubMed PMID: 14583762. Pubmed Central PMCID: 2394426.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Brabant G. Thyrotropin suppressive therapy in thyroid carcinoma: what are the targets? J Clin Endocrinol Metabol. 2008;93(4):1167–9. PubMed PMID: 18390811.

    Article  CAS  Google Scholar 

  78. McGriff NJ, Csako G, Gourgiotis L, Lori CG, Pucino F, Sarlis NJ. Effects of thyroid hormone suppression therapy on adverse clinical outcomes in thyroid cancer. Ann Med. 2002;34(7–8):554–64. PubMed PMID: 12553495.

    Article  CAS  PubMed  Google Scholar 

  79. Biondi B, Cooper DS. Benefits of thyrotropin suppression versus the risks of adverse effects in differentiated thyroid cancer. Thyroid. 2010;20(2):135–46. PubMed PMID: 20151821.

    Article  CAS  PubMed  Google Scholar 

  80. Cappola AR, Fried LP, Arnold AM, Danese MD, Kuller LH, Burke GL, et al. Thyroid status, cardiovascular risk, and mortality in older adults. JAMA. 2006;295(9):1033–41. PubMed PMID: 16507804. Pubmed Central PMCID: 1387822.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Pujol P, Daures JP, Nsakala N, Baldet L, Bringer J, Jaffiol C. Degree of thyrotropin suppression as a prognostic determinant in differentiated thyroid cancer. J Clin Endocrinol Metabol. 1996;81(12):4318–23. PubMed PMID: 8954034.

    CAS  Google Scholar 

  82. Cooper DS, Specker B, Ho M, Sperling M, Ladenson PW, Ross DS, et al. Thyrotropin suppression and disease progression in patients with differentiated thyroid cancer: results from the National Thyroid Cancer Treatment Cooperative Registry. Thyroid. 1998;8(9):737–44. PubMed PMID: 9777742.

    Article  CAS  PubMed  Google Scholar 

  83. Spencer CA, LoPresti JS, Fatemi S, Nicoloff JT. Detection of residual and recurrent differentiated thyroid carcinoma by serum thyroglobulin measurement. Thyroid. 1999;9(5):435–41. PubMed PMID: 10365673.

    Article  CAS  PubMed  Google Scholar 

  84. Kloos RT, Mazzaferri EL. A single recombinant human thyrotropin-stimulated serum thyroglobulin measurement predicts differentiated thyroid carcinoma metastases three to five years later. J Clin Endocrinol Metabol. 2005;90(9):5047–57. PubMed PMID: 15972576.

    Article  CAS  Google Scholar 

  85. Kim TY, Kim WB, Kim ES, Ryu JS, Yeo JS, Kim SC, et al. Serum thyroglobulin levels at the time of 131I remnant ablation just after thyroidectomy are useful for early prediction of clinical recurrence in low-risk patients with differentiated thyroid carcinoma. J Clin Endocrinol Metabol. 2005;90(3):1440–5. PubMed PMID: 15613412.

    Article  CAS  Google Scholar 

  86. McCoy KL, Yim JH, Tublin ME, Burmeister LA, Ogilvie JB, Carty SE. Same-day ultrasound guidance in reoperation for locally recurrent papillary thyroid cancer. Surgery. 2007;142(6):965–72. PubMed PMID: 18063083.

    Article  PubMed  Google Scholar 

  87. Kouvaraki MA, Lee JE, Shapiro SE, Sherman SI, Evans DB. Preventable reoperations for persistent and recurrent papillary thyroid carcinoma. Surgery. 2004;136(6):1183–91. PubMed PMID: 15657574.

    Article  PubMed  Google Scholar 

  88. Shammas A, Degirmenci B, Mountz JM, McCook BM, Branstetter B, Bencherif B, et al. 18F-FDG PET/CT in patients with suspected recurrent or metastatic well-differentiated thyroid cancer. J Nucl Med. 2007;48(2):221–6. PubMed PMID: 17268018.

    CAS  PubMed  Google Scholar 

  89. Pryma DA, Schoder H, Gonen M, Robbins RJ, Larson SM, Yeung HW. Diagnostic accuracy and prognostic value of 18F-FDG PET in Hurthle cell thyroid cancer patients. J Nucl Med. 2006;47(8):1260–6. PubMed PMID: 16883003.

    PubMed  Google Scholar 

  90. Terezakis SA, Lee KS, Ghossein RA, Rivera M, Tuttle RM, Wolden SL, et al. Role of external beam radiotherapy in patients with advanced or recurrent nonanaplastic thyroid cancer: Memorial Sloan-kettering Cancer Center experience. Int J Radiat Oncol Biol Phys. 2009;73(3):795–801. PubMed PMID: 18676097.

    Article  PubMed  Google Scholar 

  91. La Quaglia MP, Black T, Holcomb GW, 3rd, Sklar C, Azizkhan RG, Haase GM, et al. Differentiated thyroid cancer: clinical characteristics, treatment, and outcome in patients under 21 years of age who present with distant metastases. A report from the Surgical Discipline Committee of the Children’s Cancer Group. J Pediatr Surg. 2000;35(6):955–9; discussion 60. PubMed PMID: 10873043.

    Article  CAS  PubMed  Google Scholar 

  92. Sampson E, Brierley JD, Le LW, Rotstein L, Tsang RW. Clinical management and outcome of papillary and follicular (differentiated) thyroid cancer presenting with distant metastasis at diagnosis. Cancer. 2007;110(7):1451–6. PubMed PMID: 17705176.

    Article  PubMed  Google Scholar 

  93. Robbins RJ, Srivastava S, Shaha A, Ghossein R, Larson SM, Fleisher M, et al. Factors influencing the basal and recombinant human thyrotropin-stimulated serum thyroglobulin in patients with metastatic thyroid carcinoma. J Clin Endocrinol Metabol. 2004;89(12):6010–6. PubMed PMID: 15579752.

    Article  CAS  Google Scholar 

  94. Dralle H, Schwarzrock R, Lang W, Bocker W, Ziegler H, Schroder S, et al. Comparison of histology and immunohistochemistry with thyroglobulin serum levels and radioiodine uptake in recurrences and metastases of differentiated thyroid carcinomas. Acta Endocrinol. 1985;108(4):504–10. PubMed PMID: 3887828.

    CAS  PubMed  Google Scholar 

  95. Brose MS, Nutting CM, Jarzab B, Elisei R, Siena S, Bastholt L, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014 Jul 26;384(9940):319–28. PubMed PMID: 24768112.

    Google Scholar 

  96. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. New Engl J Med. 2010;363(9):809–19. PubMed PMID: 20818844. Pubmed Central PMCID: 3724529.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Kim KB, Cabanillas ME, Lazar AJ, Williams MD, Sanders DL, Ilagan JL, et al. Clinical responses to vemurafenib in patients with metastatic papillary thyroid cancer harboring BRAF(V600E) mutation. Thyroid. 2013;23(10):1277–83. PubMed PMID: 23489023. Pubmed Central PMCID: 3967415.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Boussemart L, Routier E, Mateus C, Opletalova K, Sebille G, Kamsu-Kom N, et al. Prospective study of cutaneous side-effects associated with the BRAF inhibitor vemurafenib: a study of 42 patients. Ann Oncol. 2013;24(6):1691–7. PubMed PMID: 23406731.

    Article  CAS  PubMed  Google Scholar 

  99. Durante C, Puxeddu E, Ferretti E, Morisi R, Moretti S, Bruno R, et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J Clin Endocrinol Metabol. 2007;92(7):2840–3. PubMed PMID: 17488796.

    Article  CAS  Google Scholar 

  100. Liu D, Hu S, Hou P, Jiang D, Condouris S, Xing M. Suppression of BRAF/MEK/MAP kinase pathway restores expression of iodide-metabolizing genes in thyroid cells expressing the V600E BRAF mutant. Clin Cancer Res. 2007;13(4):1341–9. PubMed PMID: 17317846.

    Article  CAS  PubMed  Google Scholar 

  101. Riesco-Eizaguirre G, Gutierrez-Martinez P, Garcia-Cabezas MA, Nistal M, Santisteban P. The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na + /I- targeting to the membrane. Endocr Relat Cancer. 2006;13(1):257–69. PubMed PMID: 16601293.

    Article  CAS  PubMed  Google Scholar 

  102. Chakravarty D, Santos E, Ryder M, Knauf JA, Liao XH, West BL, et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest. 2011;121(12):4700–11. PubMed PMID: 22105174. Pubmed Central PMCID: 3225989.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. New Engl J Med. 2013;368(7):623–32. PubMed PMID: 23406027. Pubmed Central PMCID: 3615415.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linwah Yip MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yip, L. (2015). Well-Differentiated Thyroid Cancer: Papillary, Follicular, and Oncocytic (Hürthle) Cell Cancer. In: Pasieka, J., Lee, J. (eds) Surgical Endocrinopathies. Springer, Cham. https://doi.org/10.1007/978-3-319-13662-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13662-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13661-5

  • Online ISBN: 978-3-319-13662-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics