Gantz, J., Reinsel, D.: The digital universe decade – are you ready (2010),
http://goo.gl/ZaO0PR
Ratinov, L., Roth, D.: Design challenges and misconceptions in named entity recognition. In: Proceedings of the Thirteenth Conference on Computational Natural Language Learning, pp. 147–155. Association for Computational Linguistics (2009)
Google Scholar
Quaresma, P., Gonçalves, T.: Using linguistic information and machine learning techniques to identify entities from juridical documents. In: Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D. (eds.) Semantic Processing of Legal Texts. LNCS, vol. 6036, pp. 44–59. Springer, Heidelberg (2010)
CrossRef
Google Scholar
Dozier, C., Kondadadi, R., Light, M., Vachher, A., Veeramachaneni, S., Wudali, R.: Named entity recognition and resolution in legal text. In: Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D. (eds.) Semantic Processing of Legal Texts. LNCS, vol. 6036, pp. 27–43. Springer, Heidelberg (2010)
CrossRef
Google Scholar
de Maat, E., Winkels, R., van Engers, T.M.: Automated detection of reference structures in law. In: van Engers, T.M. (ed.) JURIX. Frontiers in Artificial Intelligence and Applications, vol. 152, pp. 41–50. IOS Press (2006)
Google Scholar
Palmirani, M., Brighi, R., Massini, M.: Automated extraction of normative references in legal texts. In: Proceedings of the 9th International Conference on Artificial Intelligence and Law, pp. 105–106. ACM (2003)
Google Scholar
Bruckschen, M., Northfleet, C., Silva, D., Bridi, P., Granada, R., Vieira, R., Rao, P., Sander, T.: Named entity recognition in the legal domain for ontology population. In: Workshop Programme, p. 16 (2010)
Google Scholar
Quaresma, P., Gonçalves, T.: Using linguistic information and machine learning techniques to identify entities from juridical documents. In: Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D. (eds.) Semantic Processing of Legal Texts. LNCS, vol. 6036, pp. 44–59. Springer, Heidelberg (2010)
CrossRef
Google Scholar
Bacci, L., Francesconi, E., Sagri, M.: A rule-based parsing approach for detecting case law references in italian court decisions. In: Semantic Processing of Legal Texts (SPLeT-2012) Workshop Programme, p. 27 (2012)
Google Scholar
De, E., Winkels, R., van Engers, T.: Automated detection of reference structures in law. In: Frontiers in Artificial Intelligence and Applications, p. 41 (2006)
Google Scholar
Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, vol. 4, pp. 142–147. Association for Computational Linguistics (2003)
Google Scholar
Suzuki, J., Isozaki, H.: Semi-supervised sequential labeling and segmentation using giga-word scale unlabeled data. In: ACL, pp. 665–673. Citeseer (2008)
Google Scholar
Ando, R.K., Zhang, T.: A high-performance semi-supervised learning method for text chunking. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 1–9. Association for Computational Linguistics (2005)
Google Scholar
Straková, J., Straka, M., Hajič, J.: A new state-of-the-art czech named entity recognizer. In: Habernal, I., Matousek, V. (eds.) TSD 2013. LNCS, vol. 8082, pp. 68–75. Springer, Heidelberg (2013)
Google Scholar
Konkol, M., Konopík, M.: Maximum entropy named entity recognition for czech language. In: Habernal, I., Matoušek, V. (eds.) TSD 2011. LNCS, vol. 6836, pp. 203–210. Springer, Heidelberg (2011)
CrossRef
Google Scholar
de Maat, E., Krabben, K., Winkels, R.: Machine Learning versus Knowledge Based Classification of Legal Texts. In: Proceedings of the 2010 Conference on Legal Knowledge and Information Systems: JURIX 2010: The Twenty-Third Annual Conference, pp. 87–96. IOS Press, Amsterdam (2010)
Google Scholar
Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S., Tsujii, J.: brat: a web-based tool for nlp-assisted text annotation. In: Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics, pp. 102–107. Association for Computational Linguistics (2012)
Google Scholar
Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychological Bulletin 76, 378 (1971)
CrossRef
Google Scholar
Carletta, J.: Assessing agreement on classification tasks: the kappa statistic. Computational linguistics 22, 249–254 (1996)
Google Scholar
Li, Y., Zaragoza, H., Herbrich, R., Shawe-Taylor, J., Kandola, J.S.: The perceptron algorithm with uneven margins. In: Proceedings of the Nineteenth International Conference on Machine Learning, ICML 2002, pp. 379–386. Morgan Kaufmann Publishers Inc., San Francisco (2002)
Google Scholar
Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework and Graphical Development Environment for Robust NLP Tools and Applications. In: Proceedings of the 40th Anniversary Meeting of the Association for Computational Linguistics, ACL 2002 (2002)
Google Scholar
Kim, K.-B., Kim, S., Joo, Y., Oh, A.-S.: Enhanced fuzzy single layer perceptron. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3496, pp. 603–608. Springer, Heidelberg (2005)
CrossRef
Google Scholar
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
MATH
Google Scholar
Li, Y., Bontcheva, K., Cunningham, H.: Using uneven margins svm and perceptron for information extraction. In: Proceedings of the Ninth Conference on Computational Natural Language Learning, pp. 72–79. Association for Computational Linguistics (2005)
Google Scholar
Merialdo, B.: Tagging english text with a probabilistic model. Comput. Linguist. 20, 155–171 (1994)
Google Scholar
Bikel, D.M., Miller, S., Schwartz, R., Weischedel, R.: Nymble: a high-performance learning name-finder. In: Proceedings of the Fifth Conference on Applied Natural Language Processing, pp. 194–201. Association for Computational Linguistics (1997)
Google Scholar
Nadeau, C., Bengio, Y.: Inference for the generalization error. Machine Learning 52, 239–281 (2003)
CrossRef
MATH
Google Scholar
Berners-Lee, T.: Linked data - design issues. W3C (2006)
Google Scholar
Lassila, O., Swick, R.R.: Resource description framework (RDF) model and syntax specification. Technical report (1999),
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/