Abstract
We address the task of detection and classification of references in Czech court decisions, mainly we focus on references to other court decisions and acts. In addition, we are interested in detection of institutions that issued documents under consideration. We handle these references like entities in the task of Named Entity Recognition. We approach the task using machine learning methods, namely HMM and Perceptron algorithm and we report F-measure over 90% averaged over all entities. The results significantly outperform the systems published previously.
Keywords
- Hide Markov Model
- Resource Description Framework
- Court Decision
- Name Entity Recognition
- Legal Text
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Gantz, J., Reinsel, D.: The digital universe decade – are you ready (2010), http://goo.gl/ZaO0PR
Ratinov, L., Roth, D.: Design challenges and misconceptions in named entity recognition. In: Proceedings of the Thirteenth Conference on Computational Natural Language Learning, pp. 147–155. Association for Computational Linguistics (2009)
Quaresma, P., Gonçalves, T.: Using linguistic information and machine learning techniques to identify entities from juridical documents. In: Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D. (eds.) Semantic Processing of Legal Texts. LNCS, vol. 6036, pp. 44–59. Springer, Heidelberg (2010)
Dozier, C., Kondadadi, R., Light, M., Vachher, A., Veeramachaneni, S., Wudali, R.: Named entity recognition and resolution in legal text. In: Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D. (eds.) Semantic Processing of Legal Texts. LNCS, vol. 6036, pp. 27–43. Springer, Heidelberg (2010)
de Maat, E., Winkels, R., van Engers, T.M.: Automated detection of reference structures in law. In: van Engers, T.M. (ed.) JURIX. Frontiers in Artificial Intelligence and Applications, vol. 152, pp. 41–50. IOS Press (2006)
Palmirani, M., Brighi, R., Massini, M.: Automated extraction of normative references in legal texts. In: Proceedings of the 9th International Conference on Artificial Intelligence and Law, pp. 105–106. ACM (2003)
Bruckschen, M., Northfleet, C., Silva, D., Bridi, P., Granada, R., Vieira, R., Rao, P., Sander, T.: Named entity recognition in the legal domain for ontology population. In: Workshop Programme, p. 16 (2010)
Quaresma, P., Gonçalves, T.: Using linguistic information and machine learning techniques to identify entities from juridical documents. In: Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D. (eds.) Semantic Processing of Legal Texts. LNCS, vol. 6036, pp. 44–59. Springer, Heidelberg (2010)
Bacci, L., Francesconi, E., Sagri, M.: A rule-based parsing approach for detecting case law references in italian court decisions. In: Semantic Processing of Legal Texts (SPLeT-2012) Workshop Programme, p. 27 (2012)
De, E., Winkels, R., van Engers, T.: Automated detection of reference structures in law. In: Frontiers in Artificial Intelligence and Applications, p. 41 (2006)
Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, vol. 4, pp. 142–147. Association for Computational Linguistics (2003)
Suzuki, J., Isozaki, H.: Semi-supervised sequential labeling and segmentation using giga-word scale unlabeled data. In: ACL, pp. 665–673. Citeseer (2008)
Ando, R.K., Zhang, T.: A high-performance semi-supervised learning method for text chunking. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 1–9. Association for Computational Linguistics (2005)
Straková, J., Straka, M., Hajič, J.: A new state-of-the-art czech named entity recognizer. In: Habernal, I., Matousek, V. (eds.) TSD 2013. LNCS, vol. 8082, pp. 68–75. Springer, Heidelberg (2013)
Konkol, M., Konopík, M.: Maximum entropy named entity recognition for czech language. In: Habernal, I., Matoušek, V. (eds.) TSD 2011. LNCS, vol. 6836, pp. 203–210. Springer, Heidelberg (2011)
de Maat, E., Krabben, K., Winkels, R.: Machine Learning versus Knowledge Based Classification of Legal Texts. In: Proceedings of the 2010 Conference on Legal Knowledge and Information Systems: JURIX 2010: The Twenty-Third Annual Conference, pp. 87–96. IOS Press, Amsterdam (2010)
Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S., Tsujii, J.: brat: a web-based tool for nlp-assisted text annotation. In: Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics, pp. 102–107. Association for Computational Linguistics (2012)
Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychological Bulletin 76, 378 (1971)
Carletta, J.: Assessing agreement on classification tasks: the kappa statistic. Computational linguistics 22, 249–254 (1996)
Li, Y., Zaragoza, H., Herbrich, R., Shawe-Taylor, J., Kandola, J.S.: The perceptron algorithm with uneven margins. In: Proceedings of the Nineteenth International Conference on Machine Learning, ICML 2002, pp. 379–386. Morgan Kaufmann Publishers Inc., San Francisco (2002)
Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework and Graphical Development Environment for Robust NLP Tools and Applications. In: Proceedings of the 40th Anniversary Meeting of the Association for Computational Linguistics, ACL 2002 (2002)
Kim, K.-B., Kim, S., Joo, Y., Oh, A.-S.: Enhanced fuzzy single layer perceptron. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3496, pp. 603–608. Springer, Heidelberg (2005)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
Li, Y., Bontcheva, K., Cunningham, H.: Using uneven margins svm and perceptron for information extraction. In: Proceedings of the Ninth Conference on Computational Natural Language Learning, pp. 72–79. Association for Computational Linguistics (2005)
Merialdo, B.: Tagging english text with a probabilistic model. Comput. Linguist. 20, 155–171 (1994)
Bikel, D.M., Miller, S., Schwartz, R., Weischedel, R.: Nymble: a high-performance learning name-finder. In: Proceedings of the Fifth Conference on Applied Natural Language Processing, pp. 194–201. Association for Computational Linguistics (1997)
Nadeau, C., Bengio, Y.: Inference for the generalization error. Machine Learning 52, 239–281 (2003)
Berners-Lee, T.: Linked data - design issues. W3C (2006)
Lassila, O., Swick, R.R.: Resource description framework (RDF) model and syntax specification. Technical report (1999), http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Kríž, V., Hladká, B., Dědek, J., Nečaský, M. (2014). Statistical Recognition of References in Czech Court Decisions. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds) Human-Inspired Computing and Its Applications. MICAI 2014. Lecture Notes in Computer Science(), vol 8856. Springer, Cham. https://doi.org/10.1007/978-3-319-13647-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-13647-9_6
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13646-2
Online ISBN: 978-3-319-13647-9
eBook Packages: Computer ScienceComputer Science (R0)