Advertisement

Evaluating Polarity for Verbal Phraseological Units

  • Priego Sánchez Belém
  • David Pinto
  • Salah Mejri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8856)

Abstract

Fixation in linguistic expressions is an inherent property of natural language that plays a central role in their description. Verbal phraseological units are phrases made up of two or more words characterized for presenting certain degree of fixation or idiomaticity (at least one of these words is a verb that plays the role of the predicate).

Phraseological units do not appear so frequently in manually constructed lexical resources as they do in real-word text, and this problem of coverage may impact the performance of many natural language processing tasks. Therefore, the construction of automatic understanding systems for these types of linguistic structures is very important, since they are a standard way of expressing a concept or idea. In this paper we present a set of experiments towards the automatic identification of the polarity of verbal phraseological units. We obtained a maximum performance of 80% for this particular task when the contextual information of a phraseological unit is considered, in comparison with a 62% when the VPU alone is only used. These results highlight the importance of analyzing automatically this type of linguistic structures. It should be stressed at the outset that these experiments are intended as a preliminary study rather than as a comprehensive analysis or solution of the aforementioned problem.

Keywords

Verbal phraseological units Text polarity Machine learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Martinez-Blasco, I.: Verbos soporte y fijació lexica. In: Las construcciones verbo-nominales libres y fijas, 47–59 (2008)Google Scholar
  2. 2.
    Coseriu, E.: Principios de semántica estructural. Gredos, Madrid, 113 (1977)Google Scholar
  3. 3.
    Mejri, S.: Le figement lexical. descriptions linguistiques et structuration sémantique. Publications de la faculté des lettres de Manouba, Tunis (1997)Google Scholar
  4. 4.
    Mejri, S.: Catégories linguistiques et étiquetage de corpus. In: L’information Grammaticale, Peeters, Paris (2007)Google Scholar
  5. 5.
    Sfar, I.: Polylexicalite et continuite prédicative: le cas des locutions verbales figées. In: Las construcciones verbo-nominales libres y fijas. Aproximación contrastiva y traductológica, 213–221 (2008)Google Scholar
  6. 6.
    Mejri, S.: Constructions à verbes supports, collocations et locutions verbales. In: La traduction des MEJRI Salah (2008)Google Scholar
  7. 7.
    Gelbukh, A., Sidorov, G., Han, S.-Y., Hernández-Rubio, E.: Automatic enrichment of very large dictionary of word combinations on the basis of dependency formalism. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 430–437. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Huerta, P.M.: Estudio contrastivo lingüístico y semántico de las construcciones verbales fijas diatópicas mexicanas/española. In: Las construcciones verbo-nominales libres y fijas, 179–198 (2010)Google Scholar
  9. 9.
    Turney, P.D.: Thumbs up or thumbs down?: Semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, ACL 2002, pp. 417–424. Association for Computational Linguistics, Stroudsburg (2002)Google Scholar
  10. 10.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? sentiment classification using machine learning techniques. In: Proceedings of EMNLP, pp. 79–86 (2002)Google Scholar
  11. 11.
    Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2004, pp. 168–177. ACM, New York (2004)CrossRefGoogle Scholar
  12. 12.
    Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment analysis of twitter data. In: Proceedings of the Workshop on Language in Social Media (LSM 2011), Portland, Oregon, pp. 30–38 (2011)Google Scholar
  13. 13.
    Mukherjee, S., Bhattacharyya, P.: Sentiment analysis in Twitter with lightweight discourse analysis. In: Proceedings of COLING 2012, Mumbai, India, pp. 1847–1864. The COLING 2012 Organizing Committee (2012)Google Scholar
  14. 14.
    Becker, L., Erhart, G., Skiba, D., Matula, V.: Avaya: Sentiment analysis on twitter with self-training and polarity lexicon expansion. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), Atlanta, Georgia, USA, vol. 2, pp. 333–340 (2013)Google Scholar
  15. 15.
    Han, Q., Guo, J., Schuetze, H.: Codex: Combining an svm classifier and character n-gram language models for sentiment analysis on twitter. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), Atlanta, Georgia, USA, pp. 520–524 (2013)Google Scholar
  16. 16.
    Chawla, K., Ramteke, A., Bhattacharyya, P.: Iitb-sentiment-analysts: Participation in sentiment analysis in twitter semeval 2013 task. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), Atlanta, Georgia, USA, pp. 495–500 (2013)Google Scholar
  17. 17.
    Balahur, A., Turchi, M.: Improving sentiment analysis in twitter using multilingual machine translated data. In: Proceedings of the International Conference Recent Advances in Natural Language Processing RANLP 2013, Hissar, Bulgaria, pp. 49–55. INCOMA Ltd, Shoumen (2013)Google Scholar
  18. 18.
    Balage Filho, P., Pardo, T.: Nilc_usp: A hybrid system for sentiment analysis in twitter messages. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), Atlanta, Georgia, USA, pp. 568–572 (2013)Google Scholar
  19. 19.
    Moreira, S., Filgueiras, J.A., Martins, B., Couto, F., Silva, M.J.: Reaction: A naive machine learning approach for sentiment classification. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), Atlanta, Georgia, USA, pp. 490–494 (2013)Google Scholar
  20. 20.
    Reckman, H., Baird, C., Crawford, J., Crowell, R., Micciulla, L., Sethi, S., Veress, F.: teragram: Rule-based detection of sentiment phrases using sas sentiment analysis. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), Atlanta, Georgia, USA, pp. 513–519 (2013)Google Scholar
  21. 21.
    Tiantian, Z., Fangxi, Z., Lan, M.: Ecnucs: A surface information based system description of sentiment analysis in twitter in the semeval-2013 (task 2). In: Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), Atlanta, Georgia, USA, pp. 408–413 (2013)Google Scholar
  22. 22.
    Marchand, M., Ginsca, A., Besançon, R., Mesnard, O.: [lvic-limsi]: Using syntactic features and multi-polarity words for sentiment analysis in twitter. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), Atlanta, Georgia, USA, pp. 418–424 (2013)Google Scholar
  23. 23.
    Clark, S., Wicentwoski, R.: Swatcs: Combining simple classifiers with estimated accuracy. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), Atlanta, Georgia, USA, pp. 425–429 (2013)Google Scholar
  24. 24.
    Hamdan, H., Béchet, F., Bellot, P.: Experiments with dbpedia, wordnet and sentiwordnet as resources for sentiment analysis in micro-blogging. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), Atlanta, Georgia, USA, pp. 455–459 (2013)Google Scholar
  25. 25.
    Martínez-Cámara, E., Montejo-Ráez, A., Martín-Valdivia, M.T., Ureña López, L.A.: Sinai: Machine learning and emotion of the crowd for sentiment analysis in microblogs. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), Atlanta, Georgia, USA, pp. 402–407 (2013)Google Scholar
  26. 26.
    Levallois, C.: Umigon: sentiment analysis for tweets based on terms lists and heuristics. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), Atlanta, Georgia, USA, pp. 414–417 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Priego Sánchez Belém
    • 1
    • 2
  • David Pinto
    • 2
  • Salah Mejri
    • 1
  1. 1.LDI, Université Paris 13, Sorbonne Paris CitéParisFrance
  2. 2.FCC, Benemérita Universidad Autónoma de PueblaCol. San ManuelMéxico

Personalised recommendations