The AhoSR Automatic Speech Recognition System

  • Igor Odriozola
  • Luis Serrano
  • Inma Hernaez
  • Eva Navas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8854)

Abstract

AhoSR is a hidden Markov model based speech recognition system developed in the Aholab Signal Processing Laboratory research group of the University of the Basque Country. It has been modularly devised for ASR-based tools and applications to be easily implemented and tested, being also particularly interesting for research in the field of language model optimization of agglutinative languages like Basque. The system relies on the use of a static search graph where decoupled language model information is incorporated at run-time. This paper introduces the basic architecture as well as the most relevant aspects of the AhoSR speech recognition system. Besides, this paper compiles the results of several experiments which validate the system for its use in different tasks: phonetic, grammar-based and LM-based recognition. Two CALL/CAPT applications that use AhoSR are also described.

Keywords

speech recognition Basque ASR software 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Young, S.J., Evermann, G., Gales, M.J.F., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell, J., Ollason, D., Povey, D., Valtchev, V., Woodland, P.C.: The HTK Book Version 3.4.1 (2009), http://htk.eng.cam.ac.uk/
  2. 2.
    Lee, A., Kawahara, T.: Recent Development of Open-Source Speech Recognition Engine Julius. In: Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Sapporo, Japan (2009)Google Scholar
  3. 3.
    Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., Vesely, K.: The Kaldi Speech Recognition Toolkit. In: IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), Waikoloa, USA (2011)Google Scholar
  4. 4.
    Rybach, D., Gollan, C., Heigold, G., Hoffmeister, B., Lf, J., Schlter, R., Ney, H.: The RWTH Aachen University Open Source Speech Recognition System. In: Conference of the International Speech Communication Association (Interspeech 2009), Brighton, United Kingdom, pp. 2111–2114 (2009)Google Scholar
  5. 5.
    Walker, W., Lamere, P., Kwok, P., Raj, B., Singh, R., Gouvea, E., Wolf, P., Woelfel, J.: Sphinx-4: A flexible open source framework for speech recognition. Technical report (2004)Google Scholar
  6. 6.
    Hirsimki, T., Creutz, M., Siivola, V., Kurimo, M., Virpioja, S., Pylkknen, J.: Unlimited vocabulary speech recognition with morph language models applied to Finnish. Computer Speech and Language 20(4), 515–541 (2006)CrossRefGoogle Scholar
  7. 7.
    Sak, H., Saraclar, M., Gngr, T.: Morphology-based and sub-word language modeling for Turkish speech recognition. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2010), Dallas, USA, pp. 14–19 (2010)Google Scholar
  8. 8.
    Choueiter, G., Povey, D., Chen, S.F., Zweig, G.: Morpheme-based language modeling for Arabic LVCSR. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2006), Toulouse, France, pp. 14–19 (2006)Google Scholar
  9. 9.
    Mihajlik, P., Fegy, T., Tske, Z., Ircing, P.: A morpho-graphemic approach for the recognition of spontaneous speech in agglutinative languages - like Hungarian. In: Conference of the International Speech Communication Association (Interspeech 2007), Antwerp, Belgium, pp. 27–31 (2007)Google Scholar
  10. 10.
    Thangarajan, R.: Speech Recognition for agglutinative languages. In: Modern Speech Recognition Approaches with Case Studies, ch. 2, pp. 37–56 (2012)Google Scholar
  11. 11.
    Guijarrubia, V.G., Torres, M.I., Justo, R.: Morpheme-based automatic speech recognition of basque. In: Araujo, H., Mendonça, A.M., Pinho, A.J., Torres, M.I. (eds.) IbPRIA 2009. LNCS, vol. 5524, pp. 386–393. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Luengo, I., Navas, E., Odriozola, I., Saratxaga, I., Hernaez, I., Sainz, I., Erro, D.: Modified LTSE-VAD Algorithm for Applications Requiring Reduced Silence Frame Misclassification. In: International Conference on Language Resources and Evaluation (LREC 2010), Valletta, Malta, pp. 1539–1544 (2010)Google Scholar
  13. 13.
    Viikki, O., Laurila, K.: Cepstral domain segmental feature vector normalization for noise robust speech recognition. Speech Communication 25(1-3), 133–147 (1998)CrossRefGoogle Scholar
  14. 14.
    Rabiner, L.R.: A tutorial on HMM and selected applications in speech recognition. IEEE 77, 257–286 (1989)CrossRefGoogle Scholar
  15. 15.
    Young, S., Odell, J., Woodland, P.: Tree-based state tying for high accuracy acoustic modelling. In: ARPA workshop on Human Language Technology (HLT), Plainsboro, USA, pp. 307–312 (1994)Google Scholar
  16. 16.
    Hunt, A., McGlashan, S.: Speech Recognition Grammar Specification. World Wide Web Consortium (2004), http://www.w3.org/TR/speech-grammar/
  17. 17.
    Xiaolong, L., Yunxin, Z.: A fast and memory-efficient N-gram language model lookup method for large vocabulary continuous speech recognition. In: Computer Speech & Language, pp. 1–25 (2007)Google Scholar
  18. 18.
    Stolcke, A.: SRILM – an extensible language modeling toolkit. In: International Conference on Spoken Language Processing (ICSLP), Denver, USA, vol. 2, pp. 901–904 (2002)Google Scholar
  19. 19.
    Cardenal, A.: Realización de un reconocedor de voz en tiempo real para habla continua y grandes vocabularios. PhD. Thesis, Universidad de Vigo, Spain (2001) (in Spanish)Google Scholar
  20. 20.
    Demuynck, K., Duchateau, J., Compernolle, D., Wambacq, P.: An efficient search space representation for large vocabulary continuous speech recognition. Speech Communication 30(1), 37–53 (2000)CrossRefGoogle Scholar
  21. 21.
    Young, S.J., Russell, N.H., Russell, J.H.S.: Token passing: A simple conceptual model for connected speech recognition systems. Cambridge University Engineering Dept. Tech. Rep. (1989)Google Scholar
  22. 22.
    Ortmanns, S., Ney, H.: Look-ahead techniques for fast beam search. Computer Speech and Language 14, 15–32 (2000)CrossRefGoogle Scholar
  23. 23.
    Kanters, S., Cucchiarini, C., Strik, H.: The Goodness of Pronunciation algorithm: a detailed performance study. In: ISCA International Workshop on Speech and Language Technology in Education (SLaTE 2009), Warwickshire, United Kingdom, pp. 49–52 (2009)Google Scholar
  24. 24.
    Odriozola, I., Hernaez, I., Torres, M.I., Rodríguez-Fuentes, L.J., Penagarikano, M., Navas, E.: Basque Speecon-like and Basque SpeechDat MDB-600: speech databases for the development of ASR technology for Basque. In: International Conference on Language Resources and Evaluation (LREC 2014), Reykjavik, Iceland, pp. 2658–2665 (2014)Google Scholar
  25. 25.
    Johansen, F.T., Warakagoda, N., Lindberg, B., Lehtinen, G., Kacic, Z., Zgan, A., Elenius, K., Salvi, G.: COST 249 SpeechDat Multilingual Reference Recogniser. In: International Conference on Language Resources and Evaluation (LREC 2000), Athens, Greece, pp. 1351–1354 (2000)Google Scholar
  26. 26.
    Contemporary Reference Prose (Ereduzko Prosa Gaur) corpus, http://www.ehu.es/euskara-orria/euskara/ereduzkoa/ (in Basque)
  27. 27.
    Ogawa, A., Takeda, K., Itakura, F.: Balancing acoustic and linguistic probabilities. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 1998), Seattle, USA, pp. 181–184 (1998)Google Scholar
  28. 28.
    Odriozola, I., Navas, E., Hernaez, I., Sainz, I., Saratxaga, I., Snchez, J., Erro, D.: Using an ASR database to design a pronunciation evaluation system in Basque. In: International Conference on Language Resources and Evaluation (LREC 2012), Istanbul, Turkey, pp. 4122–4126 (2012)Google Scholar
  29. 29.
    Odriozola, I., Hernaez, I., Navas, E.: Design of a message verification tool to be implemented in CALL systems. In: Advances in Speech and Language Technologies for Iberian Languages (IberSPEECH 2012), Madrid, Spain, pp. 251–259 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Igor Odriozola
    • 1
  • Luis Serrano
    • 1
  • Inma Hernaez
    • 1
  • Eva Navas
    • 1
  1. 1.Aholab Signal Processing LaboratoryUniversity of the Basque Country (UPV/EHU)BilbaoBasque Country

Personalised recommendations