Skip to main content

The Prospects for Holographic Sensors

  • Chapter
  • First Online:
Holographic Sensors

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The development of rapid and low-cost optical sensors can enable monitoring of high-risk individuals at point of care. This thesis described the design, fabrication and optimisation of holographic pH, divalent metal cation, and glucose sensors. Holographic sensing is an emerging analytical platform that allows semi-quantitative colorimetric readouts by eye and fully-quantitative results by spectrophotometry. They have the added advantage of being rapidly fabricated using laser light and having precise control over the optical characteristics as compared to other optical sensors. This chapter discusses potential areas of research in (i) fabricating holographic sensors, (ii) functionalising the hydrogel matrices to increase the capabilities and the performance, (iii) multiplexing holographic sensors through microfluidics, and (iv) extracting quantitative readouts via smartphone and wearable devices. Additionally, this chapter identifies the gaps within the field, outlines the strategies to overcome the perceived limitations of holographic sensors, and includes challenges to scaling up and commercialisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yetisen AK, Butt H, da Cruz Vasconcellos F, Montelongo Y, Davidson CAB, Blyth J, Chan L, Carmody JB, Vignolini S, Steiner U, Baumberg JJ, Wilkinson TD, Lowe CR (2014) Light-directed writing of chemically tunable narrow-band holographic sensors. Adv Opt Mater 2(3):250–254. doi:10.1002/adom.201300375

    Article  Google Scholar 

  2. Tsangarides CP, Yetisen AK, da Cruz Vasconcellos F, Montelongo Y, Qasim MM, Wilkinson TD, Lowe CR, Butt H (2014) Computational modelling and characterisation of nanoparticle-based tuneable photonic crystal sensors. RSC Adv 4(21):10454–10461. doi:10.1039/C3RA47984F

    Article  CAS  Google Scholar 

  3. Yetisen AK, Qasim MM, Nosheen S, Wilkinson TD, Lowe CR (2014) Pulsed laser writing of holographic nanosensors. J Mater Chem C 2(18):3569–3576. doi:10.1039/C3tc32507e

    Article  CAS  Google Scholar 

  4. Yetisen AK, Montelongo Y, da Cruz Vasconcellos F, Martinez-Hurtado JL, Neupane S, Butt H, Qasim MM, Blyth J, Burling K, Carmody JB, Evans M, Wilkinson TD, Kubota LT, Monteiro MJ, Lowe CR (2014) Reusable, robust, and accurate laser-generated photonic nanosensor. Nano Lett 14(6):3587–3593. doi:10.1021/nl5012504

    Article  CAS  Google Scholar 

  5. Marshall AJ, Blyth J, Davidson CA, Lowe CR (2003) pH-sensitive holographic sensors. Anal Chem 75(17):4423–4431. doi:10.1021/ac020730k

  6. Vasconcellos FD, Yetisen AK, Montelongo Y, Butt H, Grigore A, Davidson CAB, Blyth J, Monteiro MJ, Wilkinson TD, Lowe CR (2014) Printable surface holograms via laser ablation. ACS Photonics 1(6):489–495. doi:10.1021/Ph400149m

    Article  CAS  Google Scholar 

  7. Blyth J (1985) Security display hologram to foil counterfeiting. In: Huff L (ed) Applications of holography. SPIE—The International Society for Optical Engineering, Los Angeles, CA, pp 18–23

    Google Scholar 

  8. Sang L, Zhao Y, Burda C (2014) TiO2 nanoparticles as functional building blocks. Chem Rev 114(19):9283–9318. doi:10.1021/cr400629p

    Article  CAS  Google Scholar 

  9. Cargnello M, Gordon TR, Murray CB (2014) Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. Chem Rev 114(19):9319–9345. doi:10.1021/cr500170p

    Article  CAS  Google Scholar 

  10. Deng S, Yetisen AK, Jiang K, Butt H (2014) Computational modelling of a graphene fresnel lens on different substrates. RSC Adv 4(57):30050–30058. doi:10.1039/C4ra03991b

    Article  CAS  Google Scholar 

  11. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145. doi:10.1021/cr900070d

    Article  CAS  Google Scholar 

  12. Kong X-T, Butt H, Yetisen AK, Kangwanwatana C, Montelongo Y, Deng S, Cruz Vasconcellos FD, Qasim MM, Wilkinson TD, Dai Q (2014) Enhanced reflection from inverse tapered nanocone arrays. Appl Phys Lett 105(5):053108. doi:10.1063/1.4892580

    Article  Google Scholar 

  13. Hu L, Hecht DS, Gruner G (2010) Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev 110(10):5790–5844. doi:10.1021/cr9002962

    Article  CAS  Google Scholar 

  14. Blyth J, Millington RB, Mayes AG, Lowe CR (1999) A diffusion method for making silver bromide based holographic recording material. Imaging Sci J 47(2):87–91

    CAS  Google Scholar 

  15. Messina GC, Wagener P, Streubel R, De Giacomo A, Santagata A, Compagnini G, Barcikowski S (2013) Pulsed laser ablation of a continuously-fed wire in liquid flow for high-yield production of silver nanoparticles. Phys Chem Chem Phys 15(9):3093–3098. doi:10.1039/C2cp42626a

    Article  CAS  Google Scholar 

  16. Wagener P, Ibrahimkutty S, Menzel A, Plech A, Barcikowski S (2013) Dynamics of silver nanoparticle formation and agglomeration inside the cavitation bubble after pulsed laser ablation in liquid. Phys Chem Chem Phys 15(9):3068–3074. doi:10.1039/C2cp42592k

    Article  CAS  Google Scholar 

  17. Naydenova I, Jallapuram R, Toal V, Martin S (2008) A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer. Appl Phys Lett 92(3):031109. doi:10.1063/1.2837454

    Article  Google Scholar 

  18. Naydenova I, Jallapuram R, Toal V, Martin S (2009) Characterisation of the humidity and temperature responses of a reflection hologram recorded in acrylamide-based photopolymer. Sens Actuators B 139(1):35–38. doi:10.1016/j.snb.2008.08.020

    Article  CAS  Google Scholar 

  19. Mikulchyk T, Martin S, Naydenova I (2013) Humidity and temperature effect on properties of transmission gratings recorded in PVA/AA-based photopolymer layers. J Opt 15 (10). doi:10.1088/2040-8978/15/10/105301

  20. Mikulchyk T, Martin S, Naydenova I (2014) Investigation of the sensitivity to humidity of an acrylamide-based photopolymer containing N-phenylglycine as a photoinitiator. Opt Mater 37:810–815. doi:10.1016/j.optmat.2014.09.012

    Article  CAS  Google Scholar 

  21. Farandos NM, Yetisen AK, Monteiro MJ, Lowe CR, Yun SH (2014) Contact lens sensors in ocular diagnostics. Adv Healthc Mater. doi:10.1002/adhm.201400504

  22. Blyth J, Lowe CR, Davidson CAB, Kabilan S, Dobson CA (2005) Holographic sensor. 2005012884 A1

    Google Scholar 

  23. Schnars U, Jueptner W (2005) Digital holography: digital hologram recording, numerical reconstruction, and related techniques. Springer, Heidelberg

    Google Scholar 

  24. Picart P, Li J (2013) Digital holography. ISTE/Wiley, New York

    Google Scholar 

  25. Makos MA, Omiatek DM, Ewing AG, Heien ML (2010) Development and characterization of a voltammetric carbon-fiber microelectrode pH sensor. Langmuir 26(12):10386–10391. doi:10.1021/la100134r

  26. Huang BR, Lin TC (2011) Leaf-like carbon nanotube/nickel composite membrane extended-gate field-effect transistors as pH sensor. Appl Phys Lett 99(2):023108. doi:10.1063/1.3610554

    Article  Google Scholar 

  27. Modi S, Swetha MG, Goswami D, Gupta GD, Mayor S, Krishnan Y (2009) A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat Nanotechnol 4(5):325–330. doi:10.1038/Nnano.2009.83

    Article  CAS  Google Scholar 

  28. Tantama M, Hung YP, Yellen G (2011) Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor. J Am Chem Soc 133(26):10034–10037. doi:10.1021/Ja202902d

    Article  CAS  Google Scholar 

  29. Grover A, Schmidt BF, Salter RD, Watkins SC, Waggoner AS, Bruchez MP (2012) Genetically encoded pH sensor for tracking surface proteins through endocytosis. Angew Chem Int Edit 51(20):4838–4842. doi:10.1002/anie.201108107

    Article  CAS  Google Scholar 

  30. Novell M, Parrilla M, Crespo GA, Rius FX, Andrade FJ (2012) Paper-based ion-selective potentiometric sensors. Anal Chem 84(11):4695–4702. doi:10.1021/ac202979j

    Article  CAS  Google Scholar 

  31. Asher SA, Sharma AC, Goponenko AV, Ward MM (2003) Photonic crystal aqueous metal cation sensing materials. Anal Chem 75(7):1676–1683. doi:10.1021/ac026328n

  32. Baca JT, Finegold DN, Asher SA (2008) Progress in developing polymerized crystalline colloidal array sensors for point-of-care detection of myocardial ischemia. Analyst 133(3):385–390. doi:10.1039/B712482a

    Article  CAS  Google Scholar 

  33. Jiang HL, Zhu YH, Chen C, Shen JH, Bao H, Peng LM, Yang XL, Li CZ (2012) Photonic crystal pH and metal cation sensors based on poly(vinyl alcohol) hydrogel. New J Chem 36(4):1051–1056. doi:10.1039/C2nj20989f

    Article  CAS  Google Scholar 

  34. Yetisen AK, Montelongo Y, Qasim MM, Butt H, Wilkinson TD, Monteiro MJ, Lowe CR, Yun SH (2014) Nanocrystal bragg grating sensor for colorimetric detection of metal ions (under review)

    Google Scholar 

  35. Zhang J-T, Wang L, Luo J, Tikhonov A, Kornienko N, Asher SA (2011) 2-D array photonic crystal sensing motif. J Am Chem Soc 133(24):9152–9155. doi:10.1021/ja201015c

    Article  CAS  Google Scholar 

  36. Ben-Moshe M, Alexeev VL, Asher SA (2006) Fast responsive crystalline colloidal array photonic crystal glucose sensors. Anal Chem 78(14):5149–5157. doi:10.1021/ac060643i

    Article  CAS  Google Scholar 

  37. Yang X, Lee MC, Sartain F, Pan X, Lowe CR (2006) Designed boronate ligands for glucose-selective holographic sensors. Chemistry 12(33):8491–8497. doi:10.1002/chem.200600442

    Article  CAS  Google Scholar 

  38. Kabilan S, Marshall AJ, Sartain FK, Lee MC, Hussain A, Yang XP, Blyth J, Karangu N, James K, Zeng J, Smith D, Domschke A, Lowe CR (2005) Holographic glucose sensors. Biosens Bioelectron 20(8):1602–1610. doi:10.1016/j.bios.2004.07.005

    Article  CAS  Google Scholar 

  39. Kabilan S, Blyth J, Lee MC, Marshall AJ, Hussain A, Yang XP, Lowe CR (2004) Glucose-sensitive holographic sensors. J Mol Recognit 17(3):162–166. doi:10.1002/jmr.663

    Article  CAS  Google Scholar 

  40. Horgan AM, Marshall AJ, Kew SJ, Dean KES, Creasey CD, Kabilan S (2006) Crosslinking of phenylboronic acid receptors as a means of glucose selective holographic detection. Biosens Bioelectron 21(9):1838–1845. doi:10.1016/j.bios.2005.11.028

    Article  CAS  Google Scholar 

  41. Yang XP, Pan XH, Blyth J, Lowe CR (2008) Towards the real-time monitoring of glucose in tear fluid: holographic glucose sensors with reduced interference from lactate and pH. Biosens Bioelectron 23(6):899–905. doi:10.1016/j.bios.2007.09.016

    Article  CAS  Google Scholar 

  42. Marshall AJ, Young DS, Kabilan S, Hussain A, Blyth J, Lowe CR (2004) Holographic sensors for the determination of ionic strength. Anal Chim Acta 527(1):13–20. doi:10.1016/j.aca.2004.08.029

    Article  CAS  Google Scholar 

  43. Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13(12):2210–2251. doi:10.1039/c3lc50169h

    Article  CAS  Google Scholar 

  44. Volpatti LR, Yetisen AK (2014) Commercialization of microfluidic devices. Trends Biotechnol 32(7):347–350. doi:10.1016/j.tibtech.2014.04.010

    Article  CAS  Google Scholar 

  45. Yetisen AK, Volpatti LR (2014) Patent protection and licensing in microfluidics. Lab Chip 14(13):2217–2225. doi:10.1039/c4lc00399c

    Article  CAS  Google Scholar 

  46. Akram MS, Daly R, Vasconcellos FC, Yetisen AK, Hutchings I, Hall EAH (2015) Applications of paper-based diagnostics. In: Castillo-Leon J, Svendsen WE (eds) Lab-on-a-chip devices and micro-total analysis systems. Springer, Dordrecht

    Google Scholar 

  47. Yetisen AK, Jiang L, Cooper JR, Qin Y, Palanivelu R, Zohar Y (2011) A microsystem-based assay for studying pollen tube guidance in plant reproduction. J Micromech Microeng 21(5):054018. doi:10.1088/0960-1317/21/5/054018

    Article  Google Scholar 

  48. Yetisen AK, Martinez-Hurtado JL, Garcia-Melendrez A, Vasconcellos FC, Lowe CR (2014) A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sens Actuators B 196:156–160. doi:10.1016/j.snb.2014.01.077

    Article  CAS  Google Scholar 

  49. Yetisen AK, Martinez-Hurtado JL, da Cruz Vasconcellos F, Simsekler MC, Akram MS, Lowe CR (2014) The regulation of mobile medical applications. Lab Chip 14(5):833–840. doi:10.1039/c3lc51235e

    Article  CAS  Google Scholar 

  50. Shen L, Hagen JA, Papautsky I (2012) Point-of-care colorimetric detection with a smartphone. Lab Chip 12(21):4240–4243. doi:10.1039/c2lc40741h

    Article  CAS  Google Scholar 

  51. Hong JI, Chang B-Y (2014) Development of the smartphone-based colorimetry for multi-analyte sensing arrays. Lab Chip 14(10):1725–1732. doi:10.1039/C3LC51451J

    Article  CAS  Google Scholar 

  52. Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12(12):2118–2134. doi:10.1039/c2lc21204h

    Article  CAS  Google Scholar 

  53. Yetisen AK, Naydenova I, Vasconcellos FC, Blyth J, Lowe CR (2014) Holographic sensors: three-dimensional analyte-sensitive nanostructures and their applications. Chem Rev 114(20):10654–10696. doi:10.1021/cr500116a

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Kemal Yetisen .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yetisen, A.K. (2015). The Prospects for Holographic Sensors. In: Holographic Sensors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-13584-7_7

Download citation

Publish with us

Policies and ethics