Skip to main content

Characterization of Nanomaterials/Nanoparticles

  • Chapter
  • First Online:
Book cover Nanotechnology in Endodontics

Abstract

In recent years, engineered nanoparticles have garnered increasing attention due to their potential for application in areas ranging from consumer and industrial products to medical diagnostics and therapeutics. This potential arises from the unique physical and chemical properties associated with the high surface-to-mass ratio and quantum phenomena of nanoparticles. Nanoparticles are in the same size range as many biomolecules such as proteins and membrane receptors, and their interactions with these biomolecules can be controlled by tuning the surface property/composition of the nanoparticles. Thus, nanoparticles can serve as useful imaging, diagnostic and therapeutic agents. On the other hand, these nanoparticles can also give rise to cytotoxic effects. Hence, it is imperative to carry out detailed characterization of engineered nanoparticles, especially those intended for medical applications, to predict their behavior in the in vivo environment. This chapter describes some methods that are useful for characterizing nanoparticles and their advantages, limitations, and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AES:

Auger electron spectroscopy

AFM:

Atomic force microscopy

ATP:

Adenosine 5′-triphosphate

ATR-FTIR:

Attenuated total reflectance-Fourier transform infrared spectroscopy

CLSM:

Confocal laser scanning microscope

DCS:

Differential centrifugal sedimentation

DLS:

Dynamic light scattering

DMSO:

Dimethyl sulfoxide

ELS:

Electrophoretic light scattering

ESCA:

Electron spectroscopy for chemical analysis

FESEM:

Field emission scanning electron microscopy

FTIR:

Fourier-transform infrared spectroscopy

HPG:

Hyperbranched polyglycerol

HRMAS NMR:

High resolution magic angle spinning nuclear magnetic resonance spectroscopy

ICP:

Inductively coupled plasma

ICP-MS:

ICP-mass spectrometry

ICP-OES:

ICP-optical emission spectrometry

INT:

2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride

ITC:

Isothermal titration calorimetry

LEIS:

Low-energy ion scattering

LDH:

Lactate dehydrogenase

MTS:

5-(3-carboxymethoxyphenyl)-2-(4,5-dimethylthiazolyl)-3-(4-sulfophenyl) tetrazolium inner salt

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide

MTX:

Methotrexate

NAD+ :

Nicotinamide adenine dinucleotide

NADH:

Reduced form of nicotinamide adenine dinucleotide

NMR:

Nuclear magnetic resonance

NTA:

Nanoparticle tracking analysis

PAN:

Polyacrylonitrile

PBS:

Phosphate buffered saline

PEG:

Polyethylene glycol

PDI:

Polydispersity index

ppb:

Parts per billion

ppm:

Parts per million

ppt:

Parts per trillion

RES:

Reticuloendothelial system

RF:

Radiofrequency

SEM:

Scanning electron microscopy

STM:

Scanning tunneling microscopy

SWCNTs:

Single-walled carbon nanotubes

TEM:

Transmission electron microscopy

TOF-SIMS:

Time-of-flight secondary-ion mass spectrometry

WST-1:

2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium

WSTs:

Water-soluble tetrazolium salts

XPS:

x-ray photoelectron spectroscopy

XTT:

2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt

References

  1. European Commission (EU). Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Off J. 2011;L 275:38–40

    Google Scholar 

  2. Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev. 2006;35:583.

    Article  PubMed  Google Scholar 

  3. Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2:MR17–71.

    Article  PubMed  Google Scholar 

  4. Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE. Characterization of nanoparticles for therapeutics. Nanomedicine. 2007;2:789–803.

    Article  PubMed  Google Scholar 

  5. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83:761–9.

    Article  PubMed  Google Scholar 

  6. Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62:284–304.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Shubayev VI, Pisanic TR, Jin SH. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009;61:467–77.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res. 2003;42:463–78.

    Article  PubMed  Google Scholar 

  9. Xie J, Xu C, Kohler N, Hou Y, Sun S. Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater. 2007;19:3163–6.

    Article  Google Scholar 

  10. Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm. 2013;10:2093–110.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Lim JK, Yeap SP, Che HX, Low SC. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res Lett. 2013;8:381.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Wiogo HTR, Lim M, Bulmus V, Yun J, Amal R. Stabilization of magnetic iron oxide nanoparticles in biological media by fetal bovine serum (FBS). Langmuir. 2011;27:843–50.

    Article  PubMed  Google Scholar 

  13. Lazzari S, Moscatelli D, Codari F, Salmona M, Morbidelli M, Diomede L. Colloidal stability of polymeric nanoparticles in biological fluids. J Nanopart Res. 2012;14:920.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Lim JK, Majetich SA, Tilton RD. Stabilization of superparamagnetic iron oxide-gold shell nanoparticles in high ionic strength media. Langmuir. 2009;25:13384–93.

    Article  PubMed  Google Scholar 

  15. Mittal V, Matsko NB. Analytical imaging techniques for soft matter characterization. Berlin: Springer; 2012. p. 13–29.

    Google Scholar 

  16. Li M, Neoh KG, Wang R, Zong BY, Tan JY, Kang ET. Methotrexate-conjugated and hyperbranched polyglycerol-grafted Fe3O4 magnetic nanoparticles for targeted anticancer effects. Eur J Pharm Sci. 2013;48:111–20.

    Article  PubMed  Google Scholar 

  17. Zhang L, He R, Gu HC. Oleic acid coating on the monodisperse magnetite nanoparticles. Appl Surf Sci. 2006;253:2611–17.

    Article  Google Scholar 

  18. Tatur S, Maccarini M, Barker R, Nelson A, Fragneto G. Effect of functionalized gold nanoparticles on floating lipid bilayers. Langmuir. 2013;29:6606–14.

    Article  PubMed  Google Scholar 

  19. Lin J, Zhang H, Chen Z, Zheng Y. Penetration of lipid membranes by gold nanoparticles: Insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano. 2010;4:5421–9.

    Article  PubMed  Google Scholar 

  20. Hirsch V, Kinnear C, Moniatte M, Rothen-Rutishauser B, Clift MJD, Fink A. Surface charge of polymer coated SPIONs influences the serum protein adsorption, colloidal stability and subsequent cell interaction in vitro. Nanoscale. 2013;5:3723–32.

    Article  PubMed  Google Scholar 

  21. Jiang J, Oberdörster G, Biswas P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res. 2009;11:77–89.

    Article  Google Scholar 

  22. Doane TL, Chuang CH, Hill RJ, Burda C. Nanoparticle zeta-potentials. Acc Chem Res. 2012;45:317–26.

    Article  PubMed  Google Scholar 

  23. Kaszuba M, Corbett J, Watson FM, Jones A. High-concentration zeta potential measurements using light-scattering techniques. Phil Trans R Soc A. 2010;368:4439–51.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Salgin S, Salgin U, Bahadir S. Zeta potentials and isoelectric points of biomolecules: the effects of ion types and ionic strengths. Int J Electrochem Sci. 2012;7:12404–14.

    Google Scholar 

  25. Kirby BJ, Hasselbrink EF. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis. 2004;25:187–202.

    Article  PubMed  Google Scholar 

  26. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc. 2004;126:273–9.

    Article  PubMed  Google Scholar 

  27. Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater. 2004;3:891–5.

    Article  PubMed  Google Scholar 

  28. van der Heide P. X-ray photoelectron spectroscopy: an introduction to principles and practices. Hoboken: Wiley; 2012.

    Google Scholar 

  29. Chastain J, editor. Handbook of X-ray photoelectron spectroscopy. Eden Prairie: Perkin-Elmer Corporation; 1992.

    Google Scholar 

  30. XPS Spectra [Internet]. Casa Software Ltd.; c2013 [cited 2013 Nov 10]. Available from http://www.casaxps.com/help_manual/manual_updates/xps_spectra.pdf.

  31. Sherwood PMA. Curve fitting in surface analysis and the effect of background inclusion in the fitting process. J Vac Sci Technol A. 1996;14:1424–32.

    Article  Google Scholar 

  32. Baer DR, Gaspar DJ, Nachimuthu P, Techane SD, Castner DG. Application of surface chemical analysis tools for characterization of nanoparticles. Anal Bioanal Chem. 2010;396:983–1002.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Coates J. Interpretation of infrared spectra, a practical approach. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Chichester: Wiley; 2000. p. 10815–37.

    Google Scholar 

  34. Widemann BC, Adamson PC. Understanding and managing methotrexate nephrotoxicity. Oncologist. 2006;11:694–703.

    Article  PubMed  Google Scholar 

  35. Sun LC, Coy DH. Somatostatin receptor-targeted anti-cancer therapy. Curr Drug Deliv. 2011;8:2–10.

    Article  PubMed  Google Scholar 

  36. Cheng ZL, Elias DR, Kamat NP, Johnston ED, Poloukhtine A, Popik V, et al. Improved tumor targeting of polymer-based nanovesicles using polymer-lipid blends. Bioconjugate Chem. 2011;22:2021–9.

    Article  Google Scholar 

  37. Shan X, Chen L, Yuan Y, Liu C, Zhang X, Sheng Y, et al. Quantitative analysis of hemoglobin content in polymeric nanoparticles as blood substitutes using Fourier transform infrared spectroscopy. J Mater Sci Mater Med. 2010;21:241–9.

    Article  PubMed  Google Scholar 

  38. Tsai DH, Davila-Morris M, DelRio FW, Guha S, Zachariah MR, Hackley VA. Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated total reflectance-Fourier transform infrared spectroscopy. Langmuir. 2011;27:9302–13.

    Article  PubMed  Google Scholar 

  39. Carey FA. Chapter 13. Spectroscopy. In: Organic chemistry, 4th ed. [Internet]. McGraw Hill; c2000 [cited 2013 Nov 10]. Available from http://www.mhhe.com/physsci/chemistry/carey/student/olc/ch13nmr.html.

  40. Zhou H, Du F, Li X, Zhang B, Li W, Yan B. Characterization of organic molecules attached to gold nanoparticle surface using high resolution magic angle spinning 1H NMR. J Phys Chem C. 2008;112:19360–6.

    Article  Google Scholar 

  41. Espinosa JF. High resolution magic angle spinning NMR applied to the analysis of organic compounds bound to solid supports. Curr Top Med Chem. 2011;11:74–92.

    Article  PubMed  Google Scholar 

  42. Polito L, Monti D, Caneva E, Delnevo E, Russo G, Prosperi D. One-step bioengineering of magnetic nanoparticles via a surface diazo transfer/azide–alkyne click reaction sequence. Chem Commun. 2008;621–3.

    Google Scholar 

  43. Duguet E, Vasseur S, Mornet S, Devoisselle JM. Magnetic nanoparticles and their applications in medicine. Nanomedicine. 2006;1:157–68.

    Article  PubMed  Google Scholar 

  44. Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc. 2012;134:2139–47.

    Article  PubMed  Google Scholar 

  45. Zahr AS, Davis CA, Pishko MV. Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol). Langmuir. 2006;22:8178–85.

    Article  PubMed  Google Scholar 

  46. Vonarbourg A, Passirani C, Saulnier P, Benoit JP. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials. 2006;27:4356–73.

    Article  PubMed  Google Scholar 

  47. Fan QL, Neoh KG, Kang ET, Shuter B, Wang SC. Solvent-free atom transfer radical polymerization for the preparation of poly(poly(ethyleneglycol) monomethacrylate)-grafted Fe3O4 nanoparticles: synthesis, characterization and cellular uptake. Biomaterials. 2007;28:5426–36.

    Article  PubMed  Google Scholar 

  48. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53:283–318.

    PubMed  Google Scholar 

  49. Wang L, Neoh KG, Kang ET, Shuter B, Wang SC. Superparamagnetic hyperbranched polyglycerol-grafted Fe3O4 nanoparticles as a novel magnetic resonance imaging contrast agent: An in vitro assessment. Adv Funct Mater. 2009;19:2615–22.

    Article  Google Scholar 

  50. Welsch N, Lu Y, Dzubiella J, Ballauff M. Adsorption of proteins to functional polymeric nanoparticles. Polymer. 2013;54:2835–49.

    Article  Google Scholar 

  51. Becker AL, Welsch N, Schneider C, Ballauff M. Adsorption of RNase A on cationic polyelectrolyte brushes: a study by isothermal titration calorimetry. Biomacromolecules. 2011;12:3936–44.

    Article  PubMed  Google Scholar 

  52. Chakraborti S, Joshi P, Chakravarty D, Shanker V, Ansari ZA, Singh SP, et al. Interaction of polyethyleneimine-functionalized ZnO nanoparticles with bovine serum albumin. Langmuir. 2012;28:11142–52.

    Article  PubMed  Google Scholar 

  53. Baier G, Costa C, Zeller A, Baumann D, Sayer C, Araujo PHH, et al. BSA adsorption on differently charged polystyrene nanoparticles using isothermal titration calorimetry and the influence on cellular uptake. Macromol Biosci. 2011;11:628–38.

    Article  PubMed  Google Scholar 

  54. Shang L, Brandholt S, Stockmar F, Trouillet V, Bruns M, Nienhaus GU. Effect of protein adsorption on the fluorescence of ultrasmall gold nanoclusters. Small. 2012;8:661–5.

    Article  PubMed  Google Scholar 

  55. Röcker C, Pötzl M, Zhang F, Parak WJ, Nienhaus GU. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotech. 2009;4:577–80.

    Article  Google Scholar 

  56. Iosin M, Toderas F, Baldeck PL, Astilean S. Study of protein–gold nanoparticle conjugates by fluorescence and surface-enhanced Raman scattering. J Mol Struct. 2009;924–926:196–200.

    Article  Google Scholar 

  57. Shi XJ, Li D, Xie J, Wang S, Wu ZQ, Chen H. Spectroscopic investigation of the interactions between gold nanoparticles and bovine serum albumin. Chin Sci Bull. 2012;57:1109–15.

    Article  Google Scholar 

  58. Bell NC, Minelli C, Shard AG. Quantitation of IgG protein adsorption to gold nanoparticles using particle size measurement. Anal Methods. 2013;5:4591–601.

    Article  Google Scholar 

  59. Park EK, Lee SB, Lee YM. Preparation and characterization of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials. 2005;26:1053–61.

    Article  PubMed  Google Scholar 

  60. Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev. 2000;41:147–62.

    Article  PubMed  Google Scholar 

  61. Wang L, Neoh KG, Kang ET, Shuter B. Multifunctional polyglycerol-grafted Fe3O4@SiO2 nanoparticles for targeting ovarian cancer cells. Biomaterials. 2011;32:2166–73.

    Article  PubMed  Google Scholar 

  62. Kohler N, Sun C, Fichtenholtz A, Gunn J, Fang C, Zhang M. Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small. 2006;2:785–92.

    Article  PubMed  Google Scholar 

  63. Rosenholm JM, Peuhu E, Bate-Eya LT, Eriksson JE, Sahlgren C, Lindén M. Cancer-cell-specific induction of apoptosis using mesoporous silica nanoparticles as drug-delivery vectors. Small. 2010;6:1234–41.

    Article  PubMed  Google Scholar 

  64. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR, et al. Distribution of the folate receptor Gp38 in normal and malignant-cell lines and tissues. Cancer Res. 1992;52:3396–401.

    PubMed  Google Scholar 

  65. Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant-tissues in-vivo and in established cell-lines – physiological and clinical implications. Cancer Am Cancer Soc. 1994;73:2432–43.

    Google Scholar 

  66. Lu S, Neoh KG, Huang C, Shi Z, Kang ET. Polyacrylamide hybrid nanogels for targeted cancer chemotherapy via co-delivery of gold nanoparticles and MTX. J Colloid Interface Sci. 2013;412:46–55.

    Article  PubMed  Google Scholar 

  67. Vranic S, Boggetto N, Contremoulins V, Mornet S, Reinhardt N, Marano F, et al. Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry. Part Fibre Toxicol. 2013;10:2.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Lerch S, Dass M, Musyanovych A, Landfester K, Mailänder V. Polymeric nanoparticles of different sizes overcome the cell membrane barrier. Eur J Pharm Biopharm. 2013;84:265–74.

    Article  PubMed  Google Scholar 

  69. Yue ZG, Wei W, Lv PP, Yue H, Wang LY, Su ZG, Ma GH. Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules. 2011;12:2440–6.

    Article  PubMed  Google Scholar 

  70. Gottstein C, Wu G, Wong BJ, Zasadzinski JA. Precise quantification of nanoparticle internalization. ACS Nano. 2013;7:4933–45.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Davda J, Labhasetwar V. Characterization of nanoparticle uptake by endothelial cells. Int J Pharm. 2002;233:51–9.

    Article  PubMed  Google Scholar 

  72. Patra HK, Banerjee S, Chaudhuri U, Lahiri P, Dasgupta AK. Cell selective response to gold nanoparticles. Nanomedicine. 2007;3:111–9.

    Article  PubMed  Google Scholar 

  73. Basiji DA, Ortyn WE, Liang L, Venkatachalam V, Morrissey P. Cellular image analysis and imaging by flow cytometry. Clin Lab Med. 2007;27:653–70.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Hou X, Jones BT. Inductively coupled plasma/optical emission spectrometry. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Chichester: Wiley; 2000. p. 9468–85.

    Google Scholar 

  75. Perkin Elmer Technical note. The 30-minute guide to ICP-MS [Internet]. Waltham: PerkinElmer, Inc.; c2004–2011 [cited 2013 Nov 10]. Available from http://www.perkinelmer.com/PDFs/Downloads/tch_icpmsthirtyminuteguide.pdf.

  76. Korzeniewski C, Callewaert DM. An enzyme-release assay for natural cytotoxicity. J Immunol Methods. 1983;64:313–20.

    Article  PubMed  Google Scholar 

  77. Kroll A, Dierker C, Rommel C, Hahn D, Wohlleben W, Schulze-Isfort C, et al. Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part Fibre Toxicol. 2011;8:9.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Riss TL, Moravec RA, Niles AL, Benink HA, Worzella TJ, Minor L. Cell viability assays. In: Sittampalam GS, Gal-Edd N, Arkin M, Auld D, Austin C, Bejcek B, et al., editors. Assay guidance manual [Internet]. Bethesda: Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004. [cited 2013 Nov 10]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK144065/.

  79. Niles AL, Moravec RA, Riss TL. Update on in vitro cytotoxicity assays for drug development. Expert Opin Drug Discov. 2008;3:655–69.

    Article  PubMed  Google Scholar 

  80. Wörle-Knirsch J, Pulskamp K, Krug H. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett. 2006;6:1261–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koon Gee Neoh ScD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Neoh, K.G., Li, M., Kang, ET. (2015). Characterization of Nanomaterials/Nanoparticles. In: Kishen, A. (eds) Nanotechnology in Endodontics. Springer, Cham. https://doi.org/10.1007/978-3-319-13575-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13575-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13574-8

  • Online ISBN: 978-3-319-13575-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics