Skip to main content

Local Landscape Patterns for Fitness Landscape Analysis

  • Conference paper
Book cover Simulated Evolution and Learning (SEAL 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8886))

Included in the following conference series:

Abstract

Almost all problems targeted by evolutionary computation are black-box or heavily complex, and their fitness landscapes usually are unknown. Selection of the appropriate search algorithm and parameters is a crucial topic when the landscape of a given target problem could be unknown in advance. Although several landscape features have been proposed in this context, examining a variety of landscape features is useful for problem understanding. In this paper, we propose a novel feature vector for characterizing the fitness landscape using the local landscape patterns (LLP). The proposed feature vector is composed by the histogram of the fitness patterns of the local candidate solutions. We extract the proposed LLP feature vector from well-known continuous optimization benchmark functions and BBOB 2013 benchmark set to investigate the properties of the proposed landscape feature and discuss about its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altenberg, L.: The evolution of evolvability in genetic programming. In: Kinnear Jr., K.E. (ed.) Advances in Genetic Programming, pp. 47–74. MIT Press, Cambridge (1994)

    Google Scholar 

  2. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–22 (2004)

    Google Scholar 

  3. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann (1995)

    Google Scholar 

  4. Liu, J., Abbass, H.A., Green, D.G., Zhong, W.: Motif difficulty (MD): a predictive measure of problem difficulty for evolutionary algorithms using network motifs. Evolutionary Computation 20(3), 321–347 (2012)

    Article  Google Scholar 

  5. Loshchilov, I., Schoenauer, M., Sèbag, M.: Bi-population CMA-ES agorithms with surrogate models and line searches. In: Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation (GECCO 2013) Companion, pp. 1177–1184. ACM, New York (2013)

    Chapter  Google Scholar 

  6. Lunacek, M., Whitley, D.: The dispersion metric and the CMA evolution strategy. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation (GECCO 2006), pp. 477–484. ACM, New York (2006)

    Chapter  Google Scholar 

  7. McClymont, K.: Recent advances in problem understanding: Changes in the landscape a year on. In: Proceeding of the 15th Annual Conference Companion on Genetic and Evolutionary Computation Conference Companion (GECCO 2013) Companion, pp. 1071–1078. ACM, New York (2013)

    Google Scholar 

  8. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation (GECCO 2011), pp. 829–836. ACM, New York (2011)

    Chapter  Google Scholar 

  9. Mersmann, O., Preuss, M., Trautmann, H.: Benchmarking evolutionary algorithms: Towards exploratory landscape analysis. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 73–82. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Merz, P.: Advanced fitness landscape analysis and the performance of memetic algorithms. Evolutionary Computation 12(3), 303–325 (2004)

    Article  MathSciNet  Google Scholar 

  11. Morgan, R., Gallagher, M.: Length scale for characterising continuous optimization problems. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 407–416. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Morgan, R., Gallagher, M.: Sampling techniques and distance metrics in high dimensional continuous landscape analysis: limitations and improvements. IEEE Trans. Evol. Comput. 18(3), 456–461 (2014)

    Article  Google Scholar 

  13. Muñoz, M., Kirley, M., Halgamuge, S.: A meta-learning prediction model of algorithm performance for continuous optimization problems. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 226–235. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Müller, C.L., Sbalzarini, I.F.: Global Characterization of the CEC 2005 Fitness Landscapes Using Fitness-Distance Analysis. In: Di Chio, C., et al. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 294–303. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Müller, C., Baumgartner, B., Sbalzarini, I.: Particle swarm cma evolution strategy for the optimization of multi-funnel landscapes. In: 2009 IEEE Congress on Evolutionary Computation (CEC 2009), pp. 2685–2692 (2009)

    Google Scholar 

  16. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press (2012)

    Google Scholar 

  17. Philippe, C., Vérel, S., Manuel, C.: Local search heuristics: Fitness Cloud versus Fitness Landscape. In: Proceedings of the 16th Eureopean Conference on Artificial Intelligence (ECAI 2004), pp. 973–974. IOS Press (2004)

    Google Scholar 

  18. Pietikäinen, M., Zhao, G., Hadid, A., Ahonen, T.: Computer Vision Using Local Binary Patterns. Computational Imaging and Vision, vol. 40. Springer (2011)

    Google Scholar 

  19. Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis. In: Fodor, J., Klempous, R., Suárez Araujo, C.P. (eds.) Recent Advances in Intelligent Engineering Systems. SCI, vol. 378, pp. 161–191. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Reidys, C.M., Stadler, P.F.: Neutrality in fitness landscapes. Applied Mathematics and Computation 117(2-3), 321–350 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Smith, T., Husbands, P., Layzell, P., O’Shea, M.: Fitness landscapes and evolvability. Evolutionary Computation 10(1), 1–34 (2002)

    Article  Google Scholar 

  22. Smith-Miles, K., Tan, T.: Measuring algorithm footprints in instance space. In: 2012 IEEE Congress on Evolutionary Computation (CEC 2012), pp. 1–8 (2012)

    Google Scholar 

  23. Vanneschi, L., Tomassini, M., Collard, P., Vérel, S.: Negative Slope Coefficient: A Measure to Characterize Genetic Programming Fitness Landscapes. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 178–189. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Weinberger, E.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biological Cybernetics 63(5), 325–336 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Shirakawa, S., Nagao, T. (2014). Local Landscape Patterns for Fitness Landscape Analysis. In: Dick, G., et al. Simulated Evolution and Learning. SEAL 2014. Lecture Notes in Computer Science, vol 8886. Springer, Cham. https://doi.org/10.1007/978-3-319-13563-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13563-2_40

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13562-5

  • Online ISBN: 978-3-319-13563-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics