Skip to main content

User Preferences for Approximation-Guided Multi-objective Evolution

  • Conference paper
Simulated Evolution and Learning (SEAL 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8886))

Included in the following conference series:

Abstract

Incorporating user preferences into evolutionary multi-objective evolutionary algorithms has been an important topic in recent research in the area of evolutionary multi-objective optimization. We present a very simple and yet very effective modification to the Approximation-Guided Evolution (AGE) algorithm to incorporate user preferences. Over a wide range of test functions, we observed that the resulting algorithm called iAGE is just as good at finding evenly distributed solutions as similarly modified NSGA-II and SPEA2 variants. However, in particular for ”difficult” two-objective problems and for all three-objective problems we see more evenly distributed solutions in the user preferred region when using iAGE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bringmann, K., Friedrich, T.: Approximating the volume of unions and intersections of high-dimensional geometric objects. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 436–447. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Bringmann, K., Friedrich, T., Neumann, F., Wagner, M.: Approximation-guided evolutionary multi-objective optimization. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI 2011, vol. 2, pp. 1198–1203. AAAI Press (2011)

    Google Scholar 

  3. Daskalakis, C., Diakonikolas, I., Yannakakis, M.: How good is the chord algorithm? In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 978–991. Society for Industrial and Applied Mathematics (2010)

    Google Scholar 

  4. Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  5. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Evolutionary Multiobjective Optimization, Advanced Information and Knowledge Processing, pp. 105–145 (2005)

    Google Scholar 

  6. Deb, K., Sundar, J.: N. Udaya Bhaskara Rao, and S. Chaudhuri. Reference point based multi-objective optimization using evolutionary algorithms. Journal of Computational Intelligence Research 2, 273–286 (2006)

    MathSciNet  Google Scholar 

  7. Diakonikolas, I., Yannakakis, M.: Small approximate pareto sets for bi-objective shortest paths and other problems. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 74–88. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Durillo, J.J., Nebro, A.J., Alba, E.: The jMetal framework for multi-objective optimization: Design and architecture. In: IEEE Congress on Evolutionary Computation (CEC 2010), pp. 4138–4325 (2010)

    Google Scholar 

  9. Friedrich, T., Kroeger, T., Neumann, F.: Weighted preferences in evolutionary multi-objective optimization. Journal of Machine Learning and Cybernetics 4, 139–148 (2013)

    Article  Google Scholar 

  10. Hu, Q., Xu, L., Goodman, E.D.: Non-even spread nsga-ii and its application to conflicting multi-objective compatible control. In: Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation, pp. 223–230. ACM (2009)

    Google Scholar 

  11. Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test problem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 280–295. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans. on Evolutionary Computation 13, 284–302 (2009)

    Article  Google Scholar 

  13. Mohammadi, A., Omidvar, M.N., Li, X.: Reference point based multi-objective optimization through decomposition. In: Congress on Evolutionary Computation (CEC), pp. 1150–1157. IEEE (2012)

    Google Scholar 

  14. Mohammadi, A., Omidvar, M.N., Li, X.: A new performance metric for user-preference based multi-objective evolutionary algorithms. In: Congress on Evolutionary Computation (CEC), pp. 2825–2832. IEEE (2013)

    Google Scholar 

  15. Mohammadi, A., Omidvar, L.X., Nabi, M., Kalyanmoy, D.: Integrating user preferences and decomposition methods for many-objective optimization. In: Congress on Evolutionary Computation (CEC), pp. 421–428. IEEE (2014)

    Google Scholar 

  16. Vassilvitskii, S., Yannakakis, M.: Efficiently computing succinct trade-off curves. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1201–1213. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Wagner, M., Friedrich, T.: Efficient parent selection for approximation-guided evolutionary multi-objective optimization. In: Congress on Evolutionary Computation (CEC), pp. 1846–1853 (2013)

    Google Scholar 

  18. Wagner, M., Neumann, F.: A fast approximation-guided evolutionary multi-objective algorithm. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO 2013, pp. 687–694. ACM, New York (2013)

    Google Scholar 

  19. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 8, 173–195 (2000)

    Article  Google Scholar 

  21. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), pp. 95–100 (2002)

    Google Scholar 

  22. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: On the design of pareto-compliant indicators via weighted integration. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 862–876. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Nguyen, A.Q., Wagner, M., Neumann, F. (2014). User Preferences for Approximation-Guided Multi-objective Evolution. In: Dick, G., et al. Simulated Evolution and Learning. SEAL 2014. Lecture Notes in Computer Science, vol 8886. Springer, Cham. https://doi.org/10.1007/978-3-319-13563-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13563-2_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13562-5

  • Online ISBN: 978-3-319-13563-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics