Skip to main content

PaCcET: An Objective Space Transformation to Iteratively Convexify the Pareto Front

  • Conference paper
Simulated Evolution and Learning (SEAL 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8886))

Included in the following conference series:

Abstract

In multi-objective problems, it is desirable to use a fast algorithm that gains coverage over large parts of the Pareto front. The simplest multi-objective method is a linear combination of objectives given to a single-objective optimizer. However, it is proven that this method cannot support solutions on the concave areas of the Pareto front: one of the points on the convex parts of the Pareto front or an extreme solution is always more desirable to an optimizer. This is a significant drawback of the linear combination.

In this work we provide the Pareto Concavity Elimination Transformation (PaCcET), a novel, iterative objective space transformation that allows a linear combination (in this transformed objective space) to find solutions on concave areas of the Pareto front (in the original objective space). The transformation ensures that an optimizer will always value a non-dominated solution over any dominated solution, and can be used by any single-objective optimizer. We demonstrate the efficacy of this method in two multi-objective benchmark problems with known concave Pareto fronts. Instead of the poor coverage created by a simple linear sum, PaCcET produces a superior spread across the Pareto front, including concave areas, similar to those discovered by more computationally-expensive multi-objective algorithms like SPEA2 and NSGA-II.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balling, R., Taber, J., Brown, M., Day, K.: Multiobjective urban planning using genetic algorithm. Journal of Urban Planning and Development 125(2), 86–99 (1999)

    Article  Google Scholar 

  2. Coello, C.A., Christiansen, A.D.: Multiobjective optimization of trusses using genetic algorithms. Computers and Structures 75(6), 647–660 (2000)

    Article  Google Scholar 

  3. Coello, C.A.C.: A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowledge and Information Systems 1(3), 269–308 (1999)

    Article  Google Scholar 

  4. Das, I., Dennis, J.E.: A closer look at drawbacks of minimizing weighted sums of objectives for pareto set generation in multicriteria optimization problems. In: Structural Optimization, pp. 63–69 (1997)

    Google Scholar 

  5. Deb, K.: Search Methodologies, ch. 10, pp. 273–316. Springer (2005)

    Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective genetic algorithm: NSGA-II. Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-objective optimization. Technical report, ETH Zurich (2001)

    Google Scholar 

  8. Laumanns, M., Zitzler, E., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. Computer Engineering 3242(103) (2001)

    Google Scholar 

  9. Edgeworth, F.Y.: Mathematical Psychics: An essay on the application of mathematics to moral sciences. C. Kegan Paul and Company (1881)

    Google Scholar 

  10. Fonseca, C.M., Guerreiro, A.P., López-Ibáñez, M., Paquete, L.: On the computation of the empirical attainment function. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 106–120. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Marler, R.T., Arora, J.S.: The weighted sum method for multi-objective optimization: new insights. Structural and Multidisciplinary Optimization (2009)

    Google Scholar 

  12. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization 26, 369–395 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Messac, A., Hattis, P.D.: Physical programming design optimization for high speed civil transport (hsct). Journal of Aircraft 33(2), 446–44 (1996)

    Google Scholar 

  14. Messac, A., Ismail-Yahaya, A., Mattson, C.A.: The normalized normal constraint method for generating the pareto frontier. Struct. and Multidisc. Optimization 25, 86–98 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization method in multiobjective problems. In: ACM Symposium on Applied Computing (2002)

    Google Scholar 

  16. Penn, R., Friedler, E., Ostfeld, A.: Multi-objective evolutionary optimization for greywater reuse in municipal sewer systems. Water Research 47(15), 5911–592 (2013)

    Google Scholar 

  17. Rosehart, W., Cañizares, C.A., Quintana, V.H.: Multi-objective optimal power flows to evaluate voltage security costs in power networks. IEEE Tr. on Power Systems (2001)

    Google Scholar 

  18. Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., Dekker, E.: Empirical evaluation methods for multiobjective reinforcement learning algorithms. Machine Learning (2010)

    Google Scholar 

  19. VanVeldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications Analyses and New Innovations. PhD thesis, Air Force Institute of Technology (1999)

    Google Scholar 

  20. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithms: Analyzing the state-of-the-art. Evolutionary Computation 8(2), 125–147 (2000)

    Article  Google Scholar 

  21. Zhang, G., Shao, X., Li, P., Gao, L.: An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem. Computers and Industrial Engineering 56, 1309–1318 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yliniemi, L., Tumer, K. (2014). PaCcET: An Objective Space Transformation to Iteratively Convexify the Pareto Front. In: Dick, G., et al. Simulated Evolution and Learning. SEAL 2014. Lecture Notes in Computer Science, vol 8886. Springer, Cham. https://doi.org/10.1007/978-3-319-13563-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13563-2_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13562-5

  • Online ISBN: 978-3-319-13563-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics