Skip to main content

Analyzing Mediator-Activity Effects for Trust-Network Evolution in Social Media

  • Conference paper
PRICAI 2014: Trends in Artificial Intelligence (PRICAI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8862))

Included in the following conference series:

  • 6375 Accesses

Abstract

We analyze evolution of trust networks in social media sites from a perspective of mediators. To this end, we propose two stochastic models that simulate the dynamics of creating a trust link under the presence of mediators, the A-ME and A-MAE models, where the A-ME model analyzes mediator effects for trust-network evolution in terms of mediator types, and the A-MAE model, an extension of the A-ME model, analyzes mediator-activity effects for trust-network evolution. We present an efficient method of inferring the values of model parameters from an observed sequence of trust links and user activities. Using real data from Epinions, we experimentally show that the A-MAE model significantly outperforms the A-ME model for predicting trust links in the near future under the presence of mediators, and demonstrate the effectiveness of mediator-activity information for trust-network evolution. We further clarify, by using the A-ME and A-MAE models, several characteristic properties of trust-link creation probability in the Epinions data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Chen, W., Lakshmanan, L., Castillo, C.: Information and influence propagation in social networks. Synthesis Lectures on Data Management 5, 1–177 (2013)

    Article  Google Scholar 

  • Crandall, D., Cosley, D., Huttenlocher, D., Kleinberg, J., Suri, S.: Feedback effects between similarity and social influence in online communities. In: Proceedings of KDD 2008, pp. 160–168 (2008)

    Google Scholar 

  • Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. In: Proceedings of KDD 2010, pp. 1019–1028 (2010)

    Google Scholar 

  • Guha, R., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and distrust. In: Proceedings of WWW 2004, pp. 403–412 (2004)

    Google Scholar 

  • Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of KDD 2003, pp. 137–146 (2003)

    Google Scholar 

  • Kimura, M., Saito, K., Nakano, R., Motoda, H.: Extracting influential nodes on a social network for information diffusion. Data Min. Knowl. Disc. 20, 70–97 (2010)

    Article  MathSciNet  Google Scholar 

  • Kimura, M., Saito, K., Ohara, K., Motoda, H.: Learning to predict opinion share and detect anti-majority opinionists in social networks. J. Intell. Inf. Syst. 41, 5–37 (2013)

    Article  Google Scholar 

  • Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social networks. In: Proceedings of WWW 2010, pp. 641–650 (2010)

    Google Scholar 

  • Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58, 1019–1031 (2007)

    Article  Google Scholar 

  • Liu, H., Lim, E., Lauw, H., Le, M., Sun, A., Srivastava, J., Kim, Y.: Predicting trusts among users of online communities: an epinion case study. In: Proceedings of EC 2008, pp. 310–319 (2008)

    Google Scholar 

  • Mannila, H., Terzi, E.: Finding links and initiators: A graph-reconstruction problem. In: Proceedings of SDM 2009, pp. 1207–1217 (2009)

    Google Scholar 

  • Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Nguyen, V., Lim, E., Jiang, J., Sun, A.: To trust or not to trust? predicting online trusts using trust antecedent framework. In: Proceedings of ICDM 2009, pp. 896–901 (2009)

    Google Scholar 

  • Saito, K., Kimura, M., Ohara, K., Motoda, H.: Learning asynchronous-time information diffusion models and its application to behavioral data analysis over social networks. Journal of Computer Engineering and Informatics 1, 30–57 (2013)

    Article  Google Scholar 

  • Tang, J., Gao, H., Hu, X., Liu, H.: Exploiting homophily effect for trust prediction. In: Proceedings of WSDM 2013, pp. 53–62 (2013)

    Google Scholar 

  • Tang, J., Gao, H., Liu, H., Sarma, A.D.: etrust: Understanding trust evolution in an online world. In: Proceedings of KDD 2012, pp. 253–261 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hatta, K., Kumano, M., Kimura, M., Saito, K., Ohara, K., Motoda, H. (2014). Analyzing Mediator-Activity Effects for Trust-Network Evolution in Social Media. In: Pham, DN., Park, SB. (eds) PRICAI 2014: Trends in Artificial Intelligence. PRICAI 2014. Lecture Notes in Computer Science(), vol 8862. Springer, Cham. https://doi.org/10.1007/978-3-319-13560-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13560-1_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13559-5

  • Online ISBN: 978-3-319-13560-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics