Skip to main content

Amino Acids Pattern-Biased Spiral Search for Protein Structure Prediction

  • Conference paper
  • 6255 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 8862)

Abstract

Proteins are essentially sequences of amino acids. They adopt specific folded 3-dimensional structures to perform specific tasks. The formation of 3-dimensional structures is largely guided by the constituent amino acids. Therefore, the positional presence of amino acids in a sequence might play important roles during the protein folding process. In this paper, we present a new heuristic derived from the positional patterns of amino acids in a sequence. With the help of a biased tabu tenure, we apply this heuristic within a spiral search algorithm. The spiral search is an efficient algorithm to develop hydrophobic core in a protein structure pulling hydrophobic amino acids towards the core centre in a spiral fashion. On a set of standard benchmark proteins, we experimentally show that applying our new heuristic improves the performance of a spiral search algorithm consistently.

Keywords

  • Protein Structure Prediction
  • Spiral Search
  • Local Search
  • Lattice Models
  • Amino Acid Patterns

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anfinsen, C.B.: The principles that govern the folding of protein chains. Science 181(4096), 223–230 (1973)

    CrossRef  Google Scholar 

  • Backofen, R., Will, S.: A Constraint-based approach to fast and exact structure prediction in three-dimensional protein models. Constraint 11(1), 5–30 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Baker, D., Sali, A.: Protein structure prediction and Structural Genomics. Science 294(5540), 93–96 (2001)

    CrossRef  Google Scholar 

  • Berrera, M., Molinari, H., Fogolari, F.: Amino acid empirical contact energy definitions for fold recognition in the space of contact maps. BMC Bioinformatics 4(1), 8 (2003)

    CrossRef  Google Scholar 

  • Blum, C.: Ant colony optimization: Introduction and recent trends. Physics of Life Reviews 2(4), 353–373 (2005)

    CrossRef  Google Scholar 

  • Böckenhauer, H.-J., Dayem Ullah, A.Z.M., Kapsokalivas, L., Steinhöfel, K.: A local move set for protein folding in triangular lattice models. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 369–381. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  • Bowie, J.U., Luthy, R., Eisenberg, D.: A method to identify protein sequences that fold into a known three-dimensional structure. Science 253(5016), 164 (1991)

    CrossRef  Google Scholar 

  • Cebrián, M., Dotú, I., Van Hentenryck, P., Clote, P.: Protein structure prediction on the face centered cubic lattice by local search. In: The 23rd National Conference on Artificial Intelligence, vol. 1, pp. 241–246. AAAI Press (2008)

    Google Scholar 

  • Cutello, V., Nicosia, G., Pavone, M., Timmis, J.: An immune algorithm for protein structure prediction on lattice models. IEEE Transactions on Evolutionary Computation 11(1), 101–117 (2007)

    CrossRef  Google Scholar 

  • Dotú, I., Cebrián, M., Van Hentenryck, P., Clote, P.: On lattice protein structure prediction revisited. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2011)

    Google Scholar 

  • Hales, T.C.: A proof of the Kepler conjecture. The Annals of Mathematics 162(3), 1065–1185 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Hoque, M.T., Chetty, M., Lewis, A., Sattar, A.: Twin removal in genetic algorithms for protein structure prediction using low-resolution model. Transactions on Computational Biology and Bioinformatics 8(1), 234–245 (2011)

    CrossRef  Google Scholar 

  • Hoque, M.T., Chetty, M., Lewis, A., Sattar, A., Avery, V.M.: DFS-generated pathways in GA crossover for protein structure prediction. Neurocomputing 73(13-15), 2308–2316 (2010)

    CrossRef  Google Scholar 

  • Hoque, M.T., Chetty, M., Sattar, A.: Protein folding prediction in 3D FCC HP lattice model using genetic algorithm. In: IEEE Congress on Evolutionary Computation, vol. 2007, pp. 4138–4145 (2007)

    Google Scholar 

  • Jiang, T., Cui, Q., Shi, G., Ma, S.: Protein folding simulations of the hydrophobic-hydrophilic model by combining tabu search with genetic algorithms. The Journal of Chemical Physics 119, 4592 (2003)

    CrossRef  Google Scholar 

  • Klau, G.W., Lesh, N., Marks, J., Mitzenmacher, M.: Human-guided tabu search. In: The Eighteenth National Conference on Artificial Intelligence (AAAI 2002), Edmonton, AB, Canada (2002)

    Google Scholar 

  • Lau, K.F., Dill, K.A.: A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 22(10), 3986–3997 (1989)

    CrossRef  Google Scholar 

  • Lesh, N., Mitzenmacher, M., Whitesides, S.: A complete and effective move set for simplified protein folding. In: Research in computational molecular biology (RECOMB), pp. 188–195. ACM (2003)

    Google Scholar 

  • Levinthal, C.: Are there pathways for protein folding? Journal of Medical Physics 65(1), 44–45 (1968)

    Google Scholar 

  • Mann, M., Smith, C., Rabbath, M., Edwards, M., Will, S., Backofen, R.: CPSP-web-tools: a server for 3D lattice protein studies. Bioinformatics 25(5), 676 (2009)

    CrossRef  Google Scholar 

  • Mann, M., Will, S., Backofen, R.: CPSP-tools – Exact and complete algorithms for high-throughput 3D lattice protein studies. BMC Bioinformatics 9(1), 230 (2008)

    CrossRef  Google Scholar 

  • Patton, A.L., Punch III, W.F., Goodman, E.D.: A standard GA approach to native protein conformation prediction. In: The 6th International Conference on Genetic Algorithms, CA, USA (1995)

    Google Scholar 

  • Rashid, M.A., Newton, M.A.H., Hoque, M.T., Shatabda, S., Pham, D., Sattar, A.: Spiral search: a hydrophobic-core directed local search for simplified PSP on 3D FCC lattice. BMC Bioinformatics 14(suppl. 2), S16 (2013)

    Google Scholar 

  • Rashid, M.A., Shatabda, S., Newton, M.A.H., Hoque, M.T., Pham, D.N., Sattar, A.: Random-walk: a stagnation recovery technique for simplified protein structure prediction. In: BCB, pp. 620–622. ACM (2012)

    Google Scholar 

  • Shatabda, S., Newton, M.A.H., Pham, D.N., Sattar, A.: Memory-based local search for simplified protein structure prediction. In: The 3rd ACM Conference on Bioinformatics, Computational Biology and Biomedicine, BCB 2012, Orlando, FL, USA. ACM (2012)

    Google Scholar 

  • Shatabda, S., Newton, M.A.H., Rashid, M.A., Pham, D., Sattar, A.: The road not taken: retreat and diverge in local search for simplified protein structure prediction. BMC Bioinformatics 14(suppl. 2), S19 (2013)

    Google Scholar 

  • Simons, K.T., Bonneau, R., Ruczinski, I., Baker, D.: Ab initio protein structure prediction of CASP III targets using ROSETTA. PROTEINS: Structure, Function, and Bioinformatics (suppl. 3), 171–176 (1999)

    Google Scholar 

  • Tantar, A.-A., Melab, N., Talbi, E.-G.: A grid-based genetic algorithm combined with an adaptive simulated annealing for protein structure prediction. Soft Computing-A Fusion of Foundations, Methodologies and Applications 12(12), 1185–1198 (2008)

    MATH  Google Scholar 

  • Thachuk, C., Shmygelska, A., Hoos, H.H.: A replica exchange Monte Carlo algorithm for protein folding in the HP model. BMC Bioinformatics 8(1), 342 (2007)

    CrossRef  Google Scholar 

  • Torda, A.E.: Protein threading. In: The Proteomics Protocols Handbook, pp. 921–938 (2005)

    Google Scholar 

  • Ullah, A.D., Kapsokalivas, L., Mann, M., Steinhöfel, K.: Protein folding simulation by two-stage optimization. In: Cai, Z., Li, Z., Kang, Z., Liu, Y. (eds.) ISICA 2009. CCIS, vol. 51, pp. 138–145. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  • Ullah, A.D., Steinhöfel, K.: A hybrid approach to protein folding problem integrating constraint programming with local search. BMC Bioinformatics 11(suppl. 1), S39 (2010)

    Google Scholar 

  • Unger, R., Moult, J.: A genetic algorithm for 3D protein folding simulations. In: The 5th International Conference on Genetic Algorithms, p. 581. Morgan Kaufmann Publishers (1993)

    Google Scholar 

  • Yue, K., Dill, K.A.: Sequence-structure relationships in proteins and copolymers. Physical Review E 48(3), 2267 (1993)

    CrossRef  Google Scholar 

  • Zhang, Y., Skolnick, J.: The protein structure prediction problem could be solved using the current PDB library. The National Academy of Sciences of the United States of America 102(4), 1029 (2005)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rashid, M.A., Polash, M.M.A., Newton, M.A.H., Hoque, M.T., Sattar, A. (2014). Amino Acids Pattern-Biased Spiral Search for Protein Structure Prediction. In: Pham, DN., Park, SB. (eds) PRICAI 2014: Trends in Artificial Intelligence. PRICAI 2014. Lecture Notes in Computer Science(), vol 8862. Springer, Cham. https://doi.org/10.1007/978-3-319-13560-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13560-1_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13559-5

  • Online ISBN: 978-3-319-13560-1

  • eBook Packages: Computer ScienceComputer Science (R0)