Smart Homes pp 11-51 | Cite as

Smart Home Related Research

  • Nagender Kumar SuryadevaraEmail author
  • Subhas Chandra Mukhopadhyay
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 14)


This chapter presents the existing research works related to a smart home monitoring systems and elder care assistive technologies. The methods designed and developed for the AAL set-up of various tasks are compared and deliberated comprehensively to provide a better understanding.


Wireless Sensor Network Activity Recognition Smart Home Ambient Assisted Living Smart Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Assessment of Older People: Self-Maintaining and Instrumental Activities of Daily Living. Gerontologist 9, 179–186 (1969)Google Scholar
  2. Changing the Trajectory of Alzheimer’s Disease: A National Imperative (December 20, 2010), (retrieved September 28, 2011)
  3. Acma-Australian Communications and Media Authority, Sensing and Monitoring Recent Developments (September 2011), (retrieved December 14, 2011)
  4. Later Life in the United Kingdom (May 1, 2014), (retrieved May 20, 2014)
  5. Aipperspach, R., Cohen, E., Canny, J.: Modeling human behavior from simple sensors in the home. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 337–348. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. Akhlaghinia, M.J., Ahmad, L., Caroline, L., Nasser, S.: Occupant behaviour prediction in ambient intelligence computing environment. Journal of Uncertain Systems 2(2), 85–100 (2008)Google Scholar
  7. Alam, M., Reaz, M., Ali, M., Samad, S., Hashim, F., Hamzah, M.: Human activity classification for smart home A multiagent approach. In: Proceedings of the IEEE Symposium on Industrial Electronics & Applications (ISIEA), pp. 511–514 (2010)Google Scholar
  8. Anderson, J.G.: Social, Ethical and Legal Barriers to E-Health. International Journal of Medical Informatics 76, 480–483 (2007)CrossRefGoogle Scholar
  9. Anderson, J.G., Balas, E.A.: Computerization of Primary Care in the United States. International Journal of Healthcare Information Systems and Informatics 1(3), 1–23 (2006)CrossRefGoogle Scholar
  10. Arabnia, H.R., Wai-Chi, F., Changhoon, L., Yan, Z.: Context-Aware Middleware and Intelligent Agents for Smart Environments. IEEE Intelligent Systems 25(2), 10–11 (2010)CrossRefGoogle Scholar
  11. Arah, O.A., Klazinga, N.S., Delnoij, D.J., Ten Asbroek, A.A., Custers, T.: Conceptual frameworks for health systems performance: a quest for effectiveness, quality, and improvement. International Journal for Quality in Health Care 15(5), 377–398 (2003)CrossRefGoogle Scholar
  12. Augusto, J.C., Nugent, C.D. (eds.): Designing Smart Homes. LNCS (LNAI), vol. 4008. Springer, Heidelberg (2006)Google Scholar
  13. Barlow, J., Bayer, S., Curry, S.: Implementing Complex Innovations in Fluid Multi-Stakeholder Environments: Experiences of ‘Telecare’. Technovation, 396–406 (2006)Google Scholar
  14. Beaudin, J.S., Intille, S.S., Morris, M.E.: To Track or Not to Track: User Reactions to Concepts in Longitudinal Health Monitoring. Journal of Medical Internet Research 8(4), e29 (2006)CrossRefGoogle Scholar
  15. Beckwith, L., Kissinger, C., Burnett, M., Wiedenbeck, S., Lawrence, J., Blackwell, A., et al.: Tinkering and gender in end-user programmers’ debugging. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 231–240 (2006)Google Scholar
  16. Besdine, R.W.: Overview of Aging: The Aging Body: Merck Manual Home Edition (September 30, 2013), (retrieved December 15, 2013)
  17. Bian, J., Fan, D., Zhang, J.: The new intelligent home control system based on the dynamic and intelligent gateway. In: Proceedings of the 4th IEEE International Conference on Broadband Network and Multimedia Technology (IC-BNMT), pp. 526–530 (2011)Google Scholar
  18. BodyMedia, Home-SenseWear (March 10, 2011), (retrieved April 26, 2012)
  19. Boll, S., Heuten, W., Meyer, M.E., Meis, M.: Development of a multimodal reminder system for older persons in their residential home. Informatics for Health and Social Care 35(3), 104–124 (2010)CrossRefGoogle Scholar
  20. Bonhomme, S., Campo, E., Esteve, D., Guennec, J.: PROSAFE-extended, a telemedicine platform to contribute to medical diagnosis. Journal of Telemedicine & Telecare 14(3), 116–119 (2008)CrossRefGoogle Scholar
  21. O’Mullane, B., Bortz, B., O’Hannlon, A., Loane, J., Knapp, R.B.: Comparison of health measures to movement data in aware homes. In: Keyson, D.V., et al. (eds.) AmI 2011. LNCS, vol. 7040, pp. 290–294. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. Center for Technology and Aging. Technologies to Help Older Adults Maintain Independence: Advancing Technology Adoption (July 2009), (retrieved March 14, 2012)
  23. Chao, C., Cook, D.J.: Behavior-Based Home Energy Prediction. In: Proceedings of the 8th International Conference on Intelligent Environments (IE), pp. 57–63 (2012)Google Scholar
  24. Chen, H.: Smart health and wellbeing (Trends & Controversies). IEEE Intelligent Systems 26(5), 78–90 (2011)CrossRefGoogle Scholar
  25. Ching-Lung, L., Lin-Song, W., Hsueh-Hsien, C., Ching-Feng, L.: Telecare system using RF communication technology in elderly center. In: Proceedings of the 13th International Conference on Computer Supported Cooperative Work in Design, pp. 444–449 (2009)Google Scholar
  26. Chirac, S., Roll, W., Parada, J., Roselus, B.: Towards combining validation concepts for short and long-term ambient health monitoring. In: Proceedings of the 6th IEEE International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), SanDiego, pp. 268–274 (2012)Google Scholar
  27. Chu, C.T., Chong, E.T.: A neural network approach towards reinforcing smart home security. In: Proceedings of the 8th Asia-Pacific Symposium on Information and Telecommunication Technologies (APSITT), pp. 1–5 (2010)Google Scholar
  28. Cook, D.: Making Sense of Sensor Data. IEEE Pervasive Computing 6(2), 105–108 (2007)CrossRefGoogle Scholar
  29. Cook, D.J.: Learning Setting-Generalized Activity Models for Smart Spaces. IEEE Intelligent Systems 27(1), 32–38 (2012)CrossRefGoogle Scholar
  30. Cook, D.J., Sajal, K.D.: How Smart are our Environments? An Updated Look at the State of the Art. Pervasive and Mobile Computing 3, 53–73 (2007)CrossRefGoogle Scholar
  31. Courtney, K.L.: Privacy and Senior Willingness to Adopt Smart Home Information Technology in Residential Care Facilities. Methods of Information in Medicine 1, 76–81 (2008)Google Scholar
  32. Courtney, L.K.: Privacy and senior willingness to adopt smart home information technology in residential care facilities. Methods of Information in Medicine 47(1), 76–81 (2008)Google Scholar
  33. Croll, P.R., Croll, J.J.: Investigating Risk Exposure in e-Health Systems. International Journal of Medical Informatics 76, 460–465 (2007)CrossRefGoogle Scholar
  34. Das, S.K., Cook, D.J.: Designing Smart Environments: A Paradigm Based on Learning and Prediction. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 80–90. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  35. Demongeot, J., Virone, G., Duchene, F.: Multi-Sensors Acquisition Data Fusion, Knowledge Mining and Alarm Triggering in Health Smart Homes for Elderly People. Comptes Rendus Biologies, 673–682 (2002)Google Scholar
  36. Diane, J.C., Juan, C.A., Vikramaditya, R.J.: Ambient Intelligence: Technologies, Applications and Opportunities. Pervasive and Mobile Computing 5, 277–298 (2009)CrossRefGoogle Scholar
  37. Ding, D., Cooper, R.A., Pasquina, P.F.: Sensor Technology for Smart Homes. Elsevier: Maturitas 69, 131–136 (2011)Google Scholar
  38. Duke University. (n.d.). Smart Home Technology for Sustainable Living, (retrieved March 10, 2012)
  39. Tapia, E.M., Intille, S.S., Larson, K.: Activity Recognition in the Home Using Simple and Ubiquitous Sensors. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  40. Fleury, A., Vacher, M., Noury, N.: SVM-Based Multi-Modal Classification of Activities of Daily Living in Health Smart Homes: Sensors, Algorithms and First Experimental Results. IEEE Transactions on Information Technology in Bio Medicine 14(2), 274–284 (2010)CrossRefGoogle Scholar
  41. Fleury, A., Vacher, M., Noury, N.: SVM-Based Multimodal Classification of Activities of Daily Living in Health Smart Homes: Sensors, Algorithms, and First Experimental Results. IEEE Transactions on Information Technology in Biomedicine 14(2), 274–283 (2010)CrossRefGoogle Scholar
  42. Gallissot, M., Arfib, D., Valls, V.: TangiLight:a tangible interface for complex dynamic lighting control. In: Proceedings of KNX 2010 Conference (2010)Google Scholar
  43. Gavrilov, L.A., Heuveline, P.: Aging of Population (P. D. McNicoll, Ed.) (December 30, 2003), (retrieved August 28, 2011)
  44. Gill, K., Yang, S.-H., Yao, F., Lu, X.: A ZigBee Based Home Automation System. IEEE Transactions on Consumer Electronics 55(2), 422–430 (2009)CrossRefGoogle Scholar
  45. Gu, T., Wang, L., Wu, Z., Tao, X., Lu, J.: A Pattern Mining Approach to Sensor-Based Human Activity Recognition. IEEE Transactions on Knowledge and Data Engineering 23(9), 1359–1372 (2011)CrossRefGoogle Scholar
  46. Gu, T., Wu, X.T., Pung, H.K., Lu, J.: Epsicar: An Emerging Patterns based Approach to Sequential, Interleaved and Concurrent Activity Recognition. In: Proceedings of the 7th Annual IEEE International Conference on Pervasive Computing and Communications, Texas, pp. 1–9 (2009)Google Scholar
  47. Hao, H.D., VIncent, W.Z., Qiang, Y.: Cross-domain activity recognition via transfer learning. Pervasive and Mobile Computing 7(3), 344–358 (2011)CrossRefGoogle Scholar
  48. He, J., Li, H., Tan, J.: Real-time Daily Activity Classification with Wireless Sensor Networks using Hidden Markov Model. In: Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3192–3195 (2007)Google Scholar
  49. Hu, D.H., Yang, Q.: Cigar: Concurrent and Interleaving Goal and Activity Recognition. In: Proceedings of the Twenty-Third AAAI Conference on Artifical Intelligence, pp. 1363–1368 (2008)Google Scholar
  50. Huiru, Z., Haiying, W., Black, N.: Human Activity Detection in Smart Home Environment with Self-Adaptive Neural Networks. In: Proceedings of the IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1505–1510 (2008)Google Scholar
  51. Hyuk, J., Boreom, L., Kwang, S.P.: Detection of Abnormal Living Patterns for Elderly Living Alone using Support Vector Data Description. IEEE Transactions on Information Technology in BioMedicine 15(3), 438–448 (2011)CrossRefGoogle Scholar
  52. Jackie, C. (n.d.): Smart House - Definition of Architecture Terms, (retrieved August 10, 2011)
  53. Jacobus, C.: Telemedicne Works. Now What? Health Management Technology 25(4), 55–56 (2004)Google Scholar
  54. Jahn, M., Jentsch, M., Prause, C., Pramudianto, F.: The Energy Aware Smart Home. In: Proceedings of the 5th International Conference on Future Information Technology (FutureTech), pp. 1–8 (2010)Google Scholar
  55. Jain, G., Cook, D.J., Jakkula, V.: Monitoring health by detecting drifts and outliers for a smart environment inhabitant. In: Proceedings of the International Conference on Smart Homes and Health Telematics, pp. 1–8 (2006)Google Scholar
  56. Jerome, K.L. (n.d.): Planning and an Aging Population, (retrieved May 20, 2011)
  57. Kaibin, B., Allerding, F., Schmeck, H.: User behavior prediction for energy management in smart homes. In: Proceedings of the Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 1335–1339 (2011)Google Scholar
  58. Kavitha, R., Nasira, G.M., Nachamai, N.: Smart Home Systems using Wireless Sensor Network -A Comparative Analysis. International Journal of Computer Engineering & Technology 3(3), 94–103 (2012)Google Scholar
  59. Kim, H.H., Kyoung, N.H., Suk, L., Kyung, C.L.: Resident location-recognition algorithm using a Bayesian classifier in the PIR sensor-based indoor location-aware system. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews 39(2), 240–245 (2009)CrossRefGoogle Scholar
  60. Kinsella, K., He, W.: An Aging World: 2008. (U. o. Services, Ed.) (June 2009), (retrieved January 30, 2012)
  61. DeSilva, L.C., Chamin, M., Iskandar, M.P.: State of the art of Smart Homes. Elsevier: Engineering Applications of Artificial Intelligence 25, 1313–1321 (2012)Google Scholar
  62. Laxman, S., Sastry, P.S., Unikrishnan, K.S.: Discovering Frequent Episodes and Learning Hidden Markov Models: A Formal Connection. IEEE Transactions on Knowledge and Data Engineering 17(11), 1505–1517 (2005)CrossRefGoogle Scholar
  63. Leroy, G., Miller, T., Rosemblat, G., Browne, A.: A Balanced Approach to Health Information Evaluation: A Vocabulary-based Naive Bayes Classifier and Readability Formulas. Journal of the American Society for Information Science and Technology (JASIST) 59(9), 1409–1419 (2008)CrossRefGoogle Scholar
  64. Lofti, A., Langensiepen, C., Mahmoud, S.M., Akhlaghinia, M.J.: Smart homes for the elderly dementia sufferers: identification and prediction of abnormal behaviour. Ambient Intelligence and Humanized Computing 3(3), 205–218 (2011)Google Scholar
  65. Stikic, M., Schiele, B.: Activity Recognition from Sparsely Labeled Data Using Multi-Instance Learning. In: Choudhury, T., Quigley, A., Strang, T., Suginuma, K. (eds.) LoCA 2009. LNCS, vol. 5561, pp. 156–173. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  66. Marculescu, D., Marculesu, R., Zamora, N.H., Philip, S.: Electronic Textiles: A Platform for Pervasive. Proceedings of the IEEE, 1995–2018 (December 12, 2003)Google Scholar
  67. Marie, C., Daniel, E., Chrisophie, E., Eric, C.: A review of smart homes—Present state and future challenges. Elsevier: Computer Methods and Programs in Biomedicine 91(1), 55–81 (2008)Google Scholar
  68. Marie, C., Esteve, D., Fourniols, J.-Y., Escriba, C., Campo, E.: Smart Wearable Systems:Current Stutus and Future Challenges. Elsevier: Artificial Intelligence in Medicine 56, 137–156 (2012)Google Scholar
  69. Maurer, U., Smailagic, A., Siewiorek, D., Deisher, M.: Activity Recognition and Monitoring using Multiple Sensors on different Body Positions. In: Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks, Cambridge, pp. 1–4 (2006)Google Scholar
  70. Merriam-Webster (n.d.). Home - Definition and More from the Free Merriam-Webster Dictionary (, (retrieved August 25, 2011)
  71. Moh, M., Ho, L., Walker, Z., Moh, T.: A Prototype on RFID and Sensor Networks for Elderly Health Care. In: Ilyas, S.A.M. (ed.) RFID Handbook: Applications, Technology, Security and Privacy, pp. 311–328. CRC Press, Boca Raton (2008)Google Scholar
  72. Morris, M.E., Adair, B., Miller, K., Ozanne, E., Hansen, R., et al.: Smart-Home Technologies to Assist Older People to Live Well at Home. Journal of Aging Science 1(1), 1–9 (2013)Google Scholar
  73. Muhlhausen, D.B., Tyrrell, P.: The 2013 Index of Dependence on Government (November 21, 2013), (retrieved December 10, 2013)
  74. Mynatt, E.D., Melenhorst, A.S., Fisk, A.D., Rogers, W.A.: Aware technologies for aging in place: understanding user needs and attitudes. IEEE Pervasive Computing 3(2), 36–41 (2004)CrossRefGoogle Scholar
  75. Nasution, A.H., Sabu, E.: Intelligent Video Surveillance for Monitoring Elderly in Home Environments. In: Proceedings of the IEEE 9th workshop on Multimedia Signal Processing, pp. 203–206 (2007)Google Scholar
  76. National Institute on Aging, National Institutes of Health, World health Organization. Global Health and Aging (October 2011), (retrieved January 30, 2012)
  77. Nazerfard, E., Rashidi, P., Cook, D.J.: Discovering Temporal Features and relations of Activity Patterns. In: Proceedings of the IEEE International Conference on Data Mining Workshops (ICDMW), pp. 1069–1075 (2010)Google Scholar
  78. Nevriva, P., Machacek, Z., Krnavek, J.: Simulation of 3D temperature fields of sensors supported by 2D IR camera images of sensors’ surface temperatures. Transactions on Systems and Control (WSEAS) 3(4), 229–238 (2008)Google Scholar
  79. Niels, L.: Modeling Interleaved Hidden Processes. In: Proceedings of the 25th International Conference on Machine Learning, pp. 520–527 (2008)Google Scholar
  80. Noh, S.-K., Kim, Y.-M., Kim, D.K., Noh, B.-N.: Network Anomaly Detection Based on Clustering of Sequence Patterns. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3981, pp. 349–358. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  81. Nourizadeh, S., Deroussent, C., Song, Y.Q., Thomesse, J.P.: Medical and Home Automation Sensor Networks for Senior Citizens Telehomecare. In: Proceedings of the IEEE International Conference on Communications Workshops, ICC Workshops, pp. 1–5 (2009)Google Scholar
  82. Noury, N., Hadidi, T.: Computer Simulation of the Activity of the Elderly Person Living Independently in a Health Smart Home. Elsevier: Computer Methods and Programs in BioMedicine 108, 1216–1228 (2012)Google Scholar
  83. Nugent, C., Finlay, D.D., Fiorini, P., Tsumaki, Y., Prassler, E.: Home Automation as a Means of Independent Living. IEEE Transactions on Automation Science and Engineering 5(1), 1–9 (2008)CrossRefGoogle Scholar
  84. Ouellette, J.A., Wood, W.: Habit and Intention in Everyday Life:The Multiple process by which past behaviour predicts future behaviour. Psychological Bulletin 124(1), 54–74 (1998)CrossRefGoogle Scholar
  85. Park, T.Y., Sthapit, P., Pyun, J.-Y.: Smart digital door lock for the home automation. In: Proceedings of the IEEE Region 10 Conference (TENCON), pp. 1–6 (2009)Google Scholar
  86. Philipose, M., Fishkin, K.P., Perkowitz, M., Patterson, D.J., Fox, D., Kautz, H., et al.: Inferring Activities from Interactions with Objects. IEEE Pervasive Computing 3(4), 50–57 (2004)CrossRefGoogle Scholar
  87. Piper, A.M., Campbell, R., Hollan, J.D.: Exploring the accessibility and Appeal of Surface Computing for Older Adult Health Care Support. In: Proceedings of the 28th International Conference on Human Factors in Computing Systems, pp. 907–916 (2010)Google Scholar
  88. Rahimpour, M., Lovell, N.H., Celler, B.G., McCormick, J.: Patients Perceptions of a Home Telecare System. International Journal of Medical Informatics, 486–498 (2008)Google Scholar
  89. Rana, G., Khan, A., Hoque, M., Mitul, A.: Design and implementation of a GSM based remote home security and appliance control system. In: Proceedings of the International Conference on Advances in Electrical Engineering (ICAEE), pp. 291–295 (2013)Google Scholar
  90. Rantz, M., Aud, M., Alexander, G., Oliver, D., Minner, D., Skubic, M., et al.: Tiger Place: An Innovative Educational and Research Environment. In: Proceedings of the AAAI in Eldercare: New Solutions to Old Problems, pp. 5–6 (2008)Google Scholar
  91. Rashidi, P., Cook, D.J.: Activity Knowledge Transfer in Smart Environments. Pervasive and Mobile Computing 7(3), 331–343 (2011)CrossRefGoogle Scholar
  92. Rashidi, P., Cook, D.J., Holder, L.B., Schmitter, E.M.: Discovering Activities to Recognize and Track in Smart Environment. IEEE Transactions on Knowledge and Data Engineering 23(4), 527–539 (2011)CrossRefGoogle Scholar
  93. Riboni, D., Pareschi, L., Radaellli, L., Bettini, C.: Is ontology-based activity recognition really effective? In: IEEE International Proceedings of the Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 427–431 (2011)Google Scholar
  94. Rogers, W.A., Meyer, B., Walker, N., Fisk, A.D.: Functional Limitations to Daily Living Tasks in the aged: a Focus groups analysis. Human Factors 40, 111–125 (1998)CrossRefGoogle Scholar
  95. Rukzio, E., Leichtenstern, K., Callaghan, V., Holleis, P., Schmidt, A., Chin, J.: An Experimental Comparison of Physical Mobile Interaction Techniques: Touching, Pointing and Scanning. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 87–104. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  96. Russo, H.: Window of Opportunity for Home Care Nurses: Telehealth Technologies. Online Journal of Issues in Nursing 6(3), 1–16 (2001)Google Scholar
  97. Sanchez, D., Tentori, M.: Activity Recognition for the Smart Hospital. IEEE Intelligent Systems 23(2), 50–57 (2008)CrossRefGoogle Scholar
  98. Shin, H.J., Lee, B., Park, S.K.: Detection of abnormal living patterns for elderly living alone using support vector data description. IEEE Transactions on Information Technology in BioMedicine 15(3), 438–448 (2011)MathSciNetCrossRefGoogle Scholar
  99. Singla, G., Cook, D.J., Schmitter, E.M.: Recognizing independent and joint activities among multiple residents in smart environments. Journal of Ambient Intelligence and Humanized Computing 1(1), 57–63 (2010)CrossRefGoogle Scholar
  100. Singla, P., Domingos, P.: Entity Resolution with Markov Logic. In: Proceedings of the 6th International Conference on Data Mining (ICDM), pp. 572–582 (2006)Google Scholar
  101. Stankovski, V., Trnkoczy, J.: Application of decision trees to smart homes. In: Augusto, J.C., Nugent, C.D. (eds.) Designing Smart Homes. LNCS (LNAI), vol. 4008, pp. 132–145. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  102. Suh, C., Ko, Y.-B.: Design and Implementation of Intelligent Home Control Systems based on Active Sensor Networks. IEEE Transactions on Consumer Electronics 54(3), 1177–1184 (2008)CrossRefGoogle Scholar
  103. Surie, D., Laguionie, O., Pederson, T.: Wireless sensor networking of everyday objects in a smart home environment. In: IEEE International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp. 189–194 (2008)Google Scholar
  104. Suzuki, T., Doi, M.: Life Minder: an evidence-based wearable health care assistant. In: Proceedings of the Conference on Human Factors in Computing Systems, Seattle, pp. 127–128 (2001)Google Scholar
  105. Tamura, T., Togawa, T., Ogawa, M., Yoda, M.: Fully automated health monitoring system in the home. Medical Engineering & Physics 20(8), 573–579 (1998)CrossRefGoogle Scholar
  106. Tapia, E.M., Intille, S.S., Larson, K.: Activity Recognition in the Home Using Simple and Ubiquitous Sensors. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  107. Thompson, H.J., Thielke, S.M.: How do health care providers perceive technologies for monitoring older adults? In: Proceedings of the IEEE Annual International Conference on Engineering in Medicine and Biology Society, Minneapolis, pp. 4315–4318 (2009)Google Scholar
  108. Tibor, B., Mark, H., Michel, C.K., Jan, T.: An Ambient Agent Model for Monitoring and Analysing Dynamics of Complex Human Behavior. Journal of Ambient Intelligence and Smart Environments 3(4), 283–303 (2011)Google Scholar
  109. UN Documents Gathering a body of global agreements. Our Common Future, Chapter 4: Population and Human Resources (January 18, 2012), (retrieved March 15, 2012)
  110. Vainio, A.-M., Valtonen, M., Vanhala, J.: Proactive Fuzzy Control and Adaptation Methods for Smart Homes. IEEE Intelligent Systems 23(2), 42–49 (2008)CrossRefGoogle Scholar
  111. Van, M.A., Allen, B., Cambell, S.C.: Report of the ACR task force on International Teleradiology. Journal of the American College of Radiology 2(2), 121–125 (2005)CrossRefGoogle Scholar
  112. Vazquez, F.I., Kastner, W.: Clustering methods for occupancy prediction in smart home control. In: IEEE International Symposium on Industrial Electronics (ISIE), pp. 1321–1328 (2011)Google Scholar
  113. Walsh, K., Callan, A.: Perceptions, Preferences and Acceptance of Information and Communication Technologies in Older-Adult Community care settings in Ireland: A case study and ranked-care program analysis. Ageing International 36(1), 102–122 (2011)CrossRefGoogle Scholar
  114. World Development Indicators, The World by Income (2012), (retrieved August 17, 2012)
  115. Wu, Y.C., Chen, P.F., Hu, Z.H., Chang, C.H., Lee, G.C., Yu, W.-C.: A Mobile Health Monitoring System Using RFID Ring-Type Pulse Sensor. In: Proceedings of the 8th IEEE International Conference on Dependable, Autonomic and Secure Computing, pp. 317–322 (2009)Google Scholar
  116. Xu, M., Ma, L., Xia, F., Yuan, T., Qian, J., Shao, M.: Design and Implementation of a Wireless Sensor Network for Smart Homes. In: Proceedings of the International Workshop on Mobile Cyber-Physical Systems (MobiCPS 2010), pp. 239–243 (2010)Google Scholar
  117. Yan, H., Huo, H., Xu, Y., Gidlund, M.: Wireless sensor network based E-health system implementation and experimental results. IEEE Transactions on Consumer Electronics 56(4), 2288–2295 (2010)CrossRefGoogle Scholar
  118. Zhao, Y., Sheng, W., Junping, S., Weijun, S.: Research and thinking of friendly smart home energy system based on smart power. In: Proceedings of the International Conference on Electrical and Control Engineering (ICECE), pp. 4649–4654 (2011)Google Scholar
  119. Zhongna, Z., Wenqing, D., Jay, E., Jarod, T.G., James, K., Marilyn, R., et al.: A Real-time System for In-Home Activity Monitoring of Elders. In: Proceedings of the 31st Annual International Conference of the IEEE EMBS, pp. 6115–6118 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nagender Kumar Suryadevara
    • 1
    Email author
  • Subhas Chandra Mukhopadhyay
    • 1
  1. 1.Massey University (Manawatu) Palmerston NorthNew Zealand

Personalised recommendations